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Analytic Solutions For Constant Tension Coil Shapes
S. L. Gralnick and F. H. Tenney
Plasma Physics Laboratory

Princeton University
Princeton, New Jersey 08540 -

ABSTRACT

An analytical solution of the differential equation describing
the shape of a flexible filamentary conductor (incapable of sup-
porting bending stresses) in a toroidal magnetic field has been
obtained - previously only numerical solutions were available.

The solution derives from a series expansion of modified Bessel
functions of integer order. The characteristics of toroidal field
magnets for proposed tokamak devices are obtainable by term by
Uterm integration of the solution series. General expressions are
given for the following coil characteristics: the conductor turn
length, the solenoid inductance, the area enclosed by the coil and
the coil support dimensions. For several particular cases of
interest these coil characteristics are obtained as closed form
analytical formulae.

A new type of coil, calléd‘a compound-constant-tension coil,
is proposed. It is formed by selecting and matching (point and
slope) segments chosen from two or more members of the one parameter
family of solution curves found for the shape equation. These
coils may be supported by tension members at the intersections of
the solution curves or by a compression ring support and provide
a unique and highly attractive solution to the toroidal field coil

centering force support problem of tokamak designs.
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Analytic Solutions For Constant Tension Coil Shapes

S. L. Gralnick and F. H.‘Tenney
Plasma Physics Laboratory
Princeton University

Princeton, New Jersey 08540

I. Introduction

The shape assumed by ‘a  flexible filamentary
conductor, (incapable of supporting bending stresses), 1in a
toroidal magnetic fiéld, ' (BT « 1/R), has been of
considerable interest to the designers of toroidal field
magnets for future CTR experiments and eventual power -
reactors. A coil designed to closeiy approximate this ideal

shape, that is described by the differential equationcl)

(1)

3/2
r _* {1 + ((_15)2} //d2§
dr [ ar?

(r,6,z cylindrical coordinates are. used and Kk 1is a
constant), would experience minimum stress levels for a
given magnetic field production. As the design of existing,
copper, toroidal field magnets has already necessitated the
use of high desién stresses to reach desired field levels,

it is evident that the realization of high field, large



bore, superéonducting magnets is likely to depend on our
ability fo employ methods of reducing the excessive
mechanicalggfreSS fields. Although actual magnets are not
filamentary;, and this, combined with the ' discrete
distribution of'poils about the torus produces non-toroidal
components --of magnetic field, the shapes described by
equation (1) are an excellent approximation to the shape of
actual reduced stress coils. ‘Consequently, most: of the
ppoposed experimental and power reactor désignS‘ employ
toroidal field coils of the familiar D shape, sometimes
referred to, as the PrincetOn—D,(z) that can be generated
from equation (1).

The earliest analysis of the problem of generating a
constant tension coil shape that we have found is that of

(3)

Leites, who determined the desired shape by a graphical
construction. More recently, this problem hés been
addressed By File, Mills and Sheffield,(l) who have employed
a numeridai quadraturé of equation (1), and by Shafranov(4)
who has also presented a'numericél solution but who derived
equation (l) by posing the question, '"What coil, shape
produces an extremum of thé inductance of the"poroidal
solenoid?", and solving the resulting variational problem.
We have foﬁnd én analytic solution of theiequation
which we pr;seht here. This solution is derived from an

expansion in a series of Bessel functions. Term by term

integration of this uniformly convergent series yields a one



parameter family of integral curves of equation (1).
Solution curves for two choices of the parameter Kk are
displayed in figure 1.

Quite remarkably much of the information required by

the designer is obtainable in closed form as exact
analytical formulae. Specifically, for the Princeton D
shape the following information is available: the turn
length, the support cylinder height, the cross sectional
area of the coil and its inductance.

The D shape 1is suitable for a coil design in which
the centering force is taken by a support cylinder in the
center of the machine. Space in this area 1is 1limited
however, and the need to place ohmic heating windings in
this same interior region‘ also complicates matters.
Alternative designs can be developed from the variety of
coil shapes which c¢an be generated from the family of
solution curves of equation (1). These shapes comprise
three generic families: the D-type coil formed by utilizing
the larger outer lobe of the solution curve and closing the
coil on the inside with a vertical conductor element; the
C-type coil formed by utilizing the smaller lobe of the
curve and closing the coil on the outside of the torus and,
finally, a coil formed by combining elements chosen‘from two
different = members of the family of solution curves
(different values of k). As we will demonstrate, such a

coil can be in simple tension at every point. We will call



coils of this’'type compound coils. Members of this family
possess the novel design feature of being supportable by two
tension members .attached at the intersection péihfs of the
elements oflthe‘coil, thereby providing a unique ahd highly
attractive solution to the toroidal field coil centering

force support problem.

II. Solution of the Constant Tension Toroidal Solcnoid

Shape Eguation

The éolution of equation (1) 1ls a4 sfraight forward
matfer,_and accordingly we will proceed through it with soﬁe
rapidity, leaving much of the algebraic detail to the
reader. The physical lengths of this problem will' all be
normalized' to the geometric- mean radiﬁs of theléuter and

inner extremes of the solution curve,

r = vr, T 5 . (2)
We define x.= r/rO and y = z/rO . The first integral of
equation (1) may be obtained directly by simple integration

"yielding, .r: . !

dx ~ N



We note that

_ eksine° . (4)

and substituting © in favor of x in equation (3) gives the

integral in the form,
0
y = k"f sing' eKSINn®' 44, (5)
S
Using the definition of the arc length along the curve,

ds® = dz“ + dr , (6)

we can find the length of arc between the point at which

& = o (x=1, y=o0) and any other point on the curve, namely

L]

9
Keing"
s = r_k Sg(8) S'-e sin®' 44, (7)
) .



where Sg(8) *is :the algebraic sign of 6. We will need to

know s later on when we want to evaluate the turn length of

. P)
a toroidal field coil.

~ We now turn our attention to the integral appearing
in equétion (7)), -
6 .
3 1
7 = j‘ Cksing' Lo, (8)
o]
It turns out that all of the required information 1is

obtainable from J and its derivatives with respect to k.

Differentiating,

¢,
%% = ,§ sinb'! ekSine' de’ (9)
3 . )

and equation- (5) becomes

: y(k,0) = k 9= - 4o

The area element of a coil formed from the larger lobe of

the solution curve is o\

dA

- i (11)
2r (vy y)dax



where %> = y(k,m/2). Using 8 in favor of x and integrating

]

between a lower limit x n’ chosen as the interior radius of

the coil, and X5 the area is

b
]
N
]
&|>

w/ v

\ . .
Sj ‘Y kzsine'ekSIHG' ekSlne cosb de de'} ,
:9 '

(12)

in which A=r2-R1, the bore width of the coil, and

emin = e(xmin)' (n.b..emaX =g - emin for - D-type c011§.)
Now, ; : ’
w/2 6 /2 T /2
§ S' F(6,0')d8'de —y S F(6,6')dede" ‘Y S F(6,0')dode" »
) 0'=0 0=0_. =0
min min

(13)

which fact facilitates our reducing equation (13) to

- 2 A 3 ksinBpin 8 1
A=o2r k{a = J(k,m/2) + e min S J(k,6min)

+ g(?.,_—k) J(2k,n/2) - g—(m J(2k,0pin) - k 3 J(k 9/2)}

(14)



. P
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When the smaller lobe of the solution "~ curve is used, the

analogous formula is,

_ 2 A “Ky D g,y gy L oD -k, 3
A = 2r “k {(.}-; + 7)) = J(k,mT/2) (—-—ro + e o J(k,6 )
o (2K, 8max) - ey J(2k,-1/2)} (15)
3(21{) s vYmax 9(2k : ] y

in which the maximum coil radits ﬁnéx is defined by,

- : | 16
Tmax R1 + 4 ’ (16)

and 6 = 0(r ).
max max



For D-type coils, the magnetic energy inductively

stored in the field is,

Bozro3 . dx
UB I S 51(y2 -y) X y . (17)

the integration being performed between the minimum and

maximum coil radii. Recalling that in a toroidal solenoid

B=Boro=&l_
r

r

Y (e.m.u.), (185

2

and replacing qB by'.%LI , we find that,

2 4. 3 . 3
L = 41'01{ {Sln emin [’5‘12 J(k,emln) - 3% J(k,'ﬂ'/z)}

52
- J(k,8pip)

a2
& _ 37 J(k,n/2)]} , (19)
ok“ 3k

2
while for C-type coils,

2 s 9 -2
L = 4r_k {s1n emax['gi J(k,-m/2) 3k J(k,GmaX)]

(20)

‘32 . a2 ”
-[ 5 J(_k,—ﬂ/2) - Thy -1(k,6 ) s
akz akz max
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The locked door which now stands between us and the
desired 'infOrmation, (y, S, A, and L), 1is the integral

J(k,8) - the key that opens it is the recognition that

ksin6 _
e -—

1 s

el g (-ik) - (21)

n=-%

whére the”Jh are Bessel functions of integer order.(s) This
series c?nverges absolutely and wuniformly, as ‘dues the
series that results from ité term by term integration ong.
The rest then is algebraic detail which we will not present
here, several  different ~and equivalentAU series

representations of J(k,8) being obtained; a convient series

is,
o0
i bl i j 2 5
T(k,8) = I (k)6 + zg L1re7in® _gy 1 4+ oIR(O¥M)y ANT/2 ¢ (5
o} ., n . n
1
(22)
: ' e . . (8) L . s
in terms of the modified Bessel function, In, of integer
order.
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In the next two sections of this paper we will focus

our attention on D-type and C-type coils and demonstrate

_ 3 . -
that when emax =5 T (Princeton D) or when emax oor .m

that closed form equations are found giving the desired

data.

III. Formulae for D-type Coils

The earliest recent applications of constant tension
coils were the use of the Princeton D shape in the tokamak
reference design studies(7’8); more recently several

proposed experimental devices have also used coils of this

shape. This coil is generated by selecting emax = +37m/2.

Values of J and its first two derivatives will be needed
at ® = -m/2 and 6 = /2. At the former value of 8,.
[~ o)
w i2n
J(k,—TT/Z) = - Io(k) E - 2 z m I(2n—1) (k) ,
n=1
(23)

while at the latter,

= . 2n
J(k,n/2) = I, (k) g - 22 —(2—;_1—3 I(zn_l) (k) - (24)
n=1



- 12 -

=

Using equation (7) provides the length of the curVed portion

of the D,

po=2mr ok 1K) , (25)

¥

while the height of the support or straight section is

ohtained by dJdifferentiating equations (23) and (24) using

the well-known formulaécg)

I, (z)=1,02) o (26)

0

I .(z) + 1 (2z)
' _ "n-1 n+1
I.'(z) = - 2 , (27)

and using equation (10) to evaluate y,

h = 2rr k 1,(k) . (28)

Summing equations (25) and (28) the total conductor turn

length is,

Lourn = 27Tk [1 (k) + I, .7 (29)



%
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The area and inductance are found in much the same manner, -
substituting -w/2 for‘emin in equations  (14) and (19) and
differentiating equation (23) and (24) as required. The

results are as follows:

A = anozk [1,(2Kk) - e~k L], (30)

=
I

comr k2 [T (k) + 21,(k) + I, (k)] . (31)

Another D-type coil for which c¢losed form formulae
result is obtained by setting emax =T, The coil is formed
by connecting the points of horizontal tangency of the
larger lobe of the solution curve with a straigﬁt vertical

element. The formulas for the turn length; area, inductance

and support height of this coil will depend on the values of

J&k,n/2) (equation 24) and J(k,m); the latter is readily

shown to bec,

IGe,my = I (k) + L (k)] (32)
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where Ln is a modified Struve function.(lo) Using this

formula and others described previously, we find that;

% = mr k (I (k) + L (k)]

’

ho= wrk [I,(k) + Ly(k) + 2/7]

turn "ol [T () + I5(k) + L (k) + Ly(k) +.2/m]

- o
o

~The area and inductance of this coil are given by,
J2.
A= mr_“k {1;(2k) + L;(2k) - [I;(k) + Ly(k)]}

)

and

L= 2rr k? {1 (k) + Lo(k) - ¢ [1300 + Ly00]}

(33)

(34)

(35)

(36)

(37)

<



>,
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IV. .Formulas for C-type Coils

The family of coils obtained from the smaller lobe of
the solutioﬁ curve will be called C-type coils. They are
formed with a vertical closure on the exterior side of the
torus, in contrast fo the D coils which aré closed on the
inside. The C-coil offers some advantages over the D-coil
in that it is supported at the exterior side of the torus
where sbace is more readily available. Also, the coil is
closer to circular than the D coils; consequently, when the
extra vertical height of the D coil is not essential, it
gives a design solution having a shortér .turn length and
lower inductance, thereby reducing material requirements and
the amount of energy needed to charge the solenoid. For the
particular case in which Gm = o closed form.formulas are

ax

available as fqllows:

K 38
mr k [I_(k) - Lo(k)] (38)

o
i

| 39
h = nrok-{% - [14(k) - L ()]} (39)

2 |
% urn nrok'{f‘+ [1(x) - L (k)] - [1,(k) —-Ll(k)]} (40)



L, | _
A= L k {Ii(Zk) - Ly(2k) - [I,(k) - Ly(k)]} ) (41)

=
il

- | | .
2mr k{1,000 - L (0] - F 1,00 - Lo} . @2

One should bear in mind the significance of ry and
r2? the extreme extents of the solution curve when comparing
formulae for C-type ‘and D-type coils. Each “coil is
determined by specifying its minimum radius Rl’ its width A
and the mékimum tangent angle emax' For C-type coils the

resulting value of k is,

k = 2n(l + A/Ry) / (1 + sin 8 ) . (43)

r, may thaﬂ be found from,

r,=r, e | (44)

For D-type coils on the other hand R1 and r, are not equal.

k is found to be,

ko= en(l + A/Ry) / (1 - sin 6 ) (45)

"‘\v
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and in this case,

-2k (46)

It is interesting to note that a emax_ 0 C—type coil

and a emax = 3/2m Princeton D coil which have the same R1
and A possess Lk values which are in the relationship

= 2; i = -t il having the same R
kc/kD 2; while the emax m D-type coi g 1

and A has the same k value as the"emaX =0 Cftype coil.

V. Compound Coils

Smooth coil shapes can be formed by nestling D and C
portions of solution curves as indicated in figure (3).
Such compound coil shapes are generalizations of the C and D
coils discussed above. In figure 2 the coil bebcb can be
thought of as a D-type coil, beb, with its straight segment
replaced by a segment of a C-type éoil, bcb. The coil adaca
can be thought of as a C-type coil aca with its straight
segment replaced by the D-type coil ada. Finally, the curve
fgf suggests the hypothetical possibility of producing a
non-planar, zero‘centering force configuration.

We observe that the C and D shaped segments
correspond to differeht values of k in equation (1). AThis

Jump in k implies: either a difference in tension for the C
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and D segments, or that either the C or D segmentfcarries a
mechanical Jloading in addition to its electromagnetlc
1oading,;§r 4 combination of these two. The necessity of a
tension Eump or mechanical 1loading comes easily from
consideration of the force balance in a small segmeént of
flexible filament as shown in figure 3. The seghent is to
be considéred as part of a toroidal solenoid and therefore
the magnetic field is taken to exist only on one side of the
segment.*WEThe segment is under consfant tension aqd subject
to a mechanical pressure, p(r), as Well as the
electromagnetic forces arising from carrying a current, I,
in the toroidal magnetic field, B. If p(r) = poro/r the
force balance leads to the following expression for the

radius of curvature of the filament,

2T

o = dr=zxr (47)
| I BU r, + 2pO rO]

which is equivalent to equation 1., (For the C and D coils
described in the above sections, the straight segments have
an infinite.radius of curvature. This circumstance can bé

described by equation (47) by taking P, = %I B,.) For the

compound coil, different values of k in each segment can be
achieved in, a variety of ways. For example if T is to be
constant, pg must be different in each segment. Physically,

the proper p, will arise from the reaction of & rigid
< )

The authors express their gratitude to P. Bonanos fof
reminding them of this aspect of the magnetic field and the
consequent reduction in calculated coil tension.

.’\\



support shaped to conform to the C or D segmént of the
compound co0il with which it is in contact. If py=0
everywhere, then T must differ in each segment of the
compound coil since I, Bo and r, are common to both
segments. Physically this jump in- tension can be provided
by a tensile support mechanism at the juncture of the C and
D segments. The tension supports allow the compound coil to
hang from a surrounding structure such as a wall or external
cdmpiession ring, yielding a novel . solution to the toroidal
field coil centering force problem. |

For the compound coil the value of &, A, and L are
the sum of the corresponding quantities pertaining to the C
and D‘ type segments of the coil. For +the particular
compound coil composed of C and D segments that join with
zero slope the above mentioned quantities can be expressed
by the closed form formulae displayed abo?e in Sections III
and IV, These formulae reduire knowledge of k for both
segments. The compound coil is determined by the
specification of three quantities such as Rl’ A and tﬁe
slope of the <coil at the point where the C and D segments
join. 'l'o tind the resulting values of k requires the
solution of a transcendental relation arising from the
reduirement that the height of the C-segment must match the

height of the D—§egment.



: - 20 -

VI. Concluding Remarks

We have found an analytical solution to the constant
tension solenoid problem, (equation 1), in terms of an
infinite series of Bessel functions. Using this séiution we
have been able to demonstrate that closed form formulas,
(cqa. 85} 2B=-31), exist which provide desi?éd design
information for the Princeton D coil. Similar forﬁﬁlas are
also obtained for two other coils, the 6 . = T D-type coil

ax
(eqs. 33-37) and the emax = 0 C-type coil, (egs, 35;42).

The suggestion of using the C-type coil is not new to
this writing. Our contribution to C-coils is the ébility to
makc rapid calculations for design and estimating purposes.
This is in fact true for both C and D type ‘coils of
arbitrary parameters. The series for J(k,8) Héonverges
rapidly, énd numerical evaluation of J and its k derivatives
provides rapid information on the properties of any coil ot
coil segmént formed‘fromza solution curve of equation (1).

| By '~ joining two such segments we have prgduced a
compound coil, presented here, we believe, for tﬁe first
time. Great flexibility is available in the choice of shape
and the support design of these coils. Figure 4 shows
several different compound coil shapes and support.schémeé.
The tension jump implied by the differing values of* k for
the two segments can be taken by a tension mééhanism,

effectively hanging the coils on structure outside of the

A &

N
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torus and its congested central core. The particular
solution composed of the e@ax = AD-type segment and
emax= -1 C-type segment; allows thé”possibility of using a
plane, ring truss, . support structure which can

simultaneously be part of the toroidal '~ torque frame.
Alternatively by mounting one segment of the coil on a
preformed support pad it 1is possible to generate a
mechanical loading which exactly compensates the wunbalanced
tension. This form of support suggests the possibility of
using structure already present in reactor dgsigns, (blanket
and shield), to support the toroidal field coils, possibly
realizing a more economical design.

Finally, we would like to point out that compound
coils may have more than two segments. A multiple segment
coil having tension support fixtures or preshaped support
blocks would allow one to tailor the shape of the coil to
the particular needs of the experiment or reactor being
designed without sacrificing the reduction of mechanical
stresses and associated strain energy offered by constant

tension coils.
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Fig. 1. Solution curves of equation 1 for different values

of k; Z(r=ro)=0, Z'(r=ro)=0; ro=5.27, ({n.b., scales differ).



-26-

754943

Fig. 2. Compound-Coil shapes generated by combining segments
- different k values.

of different solution curves of equation (1)
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: 4 754945
Fig. 3. Force balance on an elemental conductor filament

carrying a distributed pressure p(r) in addition to the electro-
magnetic loadiny %IB.
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Fig. 4. Several compound coils, illustrating the wide
variety of shapes obtainable and two potential means of support-
ing the coil, tension attachments or a compression support ring.
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