14,935 research outputs found
Multiplicative local linear hazard estimation and best one-sided cross-validation
This paper develops detailed mathematical statistical theory of a new class of cross-validation techniques of local linear kernel hazards and their multiplicative bias corrections. The new class of cross-validation combines principles of local information and recent advances in indirect cross-validation. A few applications of cross-validating multiplicative kernel hazard estimation do exist in the literature. However, detailed mathematical statistical theory and small sample performance are introduced via this paper and further upgraded to our new class of best one-sided cross-validation. Best one-sided cross-validation turns out to have excellent performance in its practical illustrations, in its small sample performance and in its mathematical statistical theoretical performance
A generalized vortex lattice method for subsonic and supersonic flow applications
If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program
Mode-coupling approach to non-Newtonian Hele-Shaw flow
The Saffman-Taylor viscous fingering problem is investigated for the
displacement of a non-Newtonian fluid by a Newtonian one in a radial Hele-Shaw
cell. We execute a mode-coupling approach to the problem and examine the
morphology of the fluid-fluid interface in the weak shear limit. A differential
equation describing the early nonlinear evolution of the interface modes is
derived in detail. Owing to vorticity arising from our modified Darcy's law, we
introduce a vector potential for the velocity in contrast to the conventional
scalar potential. Our analytical results address how mode-coupling dynamics
relates to tip-splitting and side branching in both shear thinning and shear
thickening cases. The development of non-Newtonian interfacial patterns in
rectangular Hele-Shaw cells is also analyzed.Comment: 14 pages, 5 ps figures, Revtex4, accepted for publication in Phys.
Rev.
A new look inside Planetary Nebula LoTr 5: A long-period binary with hints of a possible third component
LoTr 5 is a planetary nebula with an unusual long-period binary central star.
As far as we know, the pair consists of a rapidly rotating G-type star and a
hot star, which is responsible for the ionization of the nebula. The rotation
period of the G-type star is 5.95 days and the orbital period of the binary is
now known to be 2700 days, one of the longest in central star of
planetary nebulae. The spectrum of the G central star shows a complex H
double-peaked profile which varies with very short time scales, also reported
in other central stars of planetary nebulae and whose origin is still unknown.
We present new radial velocity observations of the central star which allow us
to confirm the orbital period for the long-period binary and discuss the
possibility of a third component in the system at 129 days to the G star.
This is complemented with the analysis of archival light curves from SuperWASP,
ASAS and OMC. From the spectral fitting of the G-type star, we obtain a
effective temperature of = 5410250 K and surface gravity of
= 2.70.5, consistent with both giant and subgiant stars. We also
present a detailed analysis of the H double-peaked profile and conclude
that it does not present correlation with the rotation period and that the
presence of an accretion disk via Roche lobe overflow is unlikely.Comment: 12 pages, 12 figures, accepted for publication in MNRA
Three new Alpha1-Antitrypsin deficiency variants help to define a C-Terminal region regulating conformational change and polymerization
Alpha1-antitrypsin (AAT) deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile), Etaurisano (Lys368Glu) and Yorzinuovi (Pro391His), showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening ‘latch’ interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state
The prediction of liquid film journal bearing performance with a consideration of lubricant film reformation: part 2: experimental resuIts
Analyses and design data for plainjournal bearings rarely take into account the phenomenon of film reformation. The consideration of the re-establishment of the lubricantfilm after the cavitation region is difficult in a number of ways. The importance of allowingfor reformation is, however, being increasingly recognized. Tht.J is particularly true as regards the satisfactory predlction of lubricant
ftowrate...and the thermal operating characteristics of a bearing. The authors have previously implemented a cavitation algorithm to enable the cavitation region in a plain journal bearing to be Iocated automatically and efficiently in a computer analysis. In Part I of the present paper theoretical results have been presentedfor the case of a plain bearing with a square-ended, axial groove located at the
position of maximumfilm thickness. The second part of the paper gives detai/s of an experimental investigation designed to establish the validity of the analysis
- …