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Abstract

This paper develops detailed mathematical statistical theory of a new class of cross-validation
techniques of local linear kernel hazards and their multiplicative bias corrections. The new
class of cross-validation combines principles of local information and recent advances in in-
direct cross-validation. A few applications of cross-validating multiplicative kernel hazard
estimation do exist in the literature. However, detailed mathematical statistical theory and
small sample performance are introduced via this paper and further upgraded to our new
class of best one-sided cross-validation. Best one-sided cross-validation turns out to have
excellent performance in its practical illustrations, in its small sample performance and in
its mathematical statistical theoretical performance.

Keywords: Aalen’s multiplicative model, multiplicative bias correction, bandwidth, in-
direct cross-validation

1. Introduction

There is a growing interest in validation techniques. While validation was always a crucial el-
ement of mathematical statistics, the use of validation techniques are growing rapidly at the
moment under labels such as big data, machine learning or artificial intelligence. Many of
these developments seem less patient with laborious mathematical statistical model formu-
lation and estimation theory than what has been the trademark of the field of mathematical
statistics. Instead inspiration seems to be taken from neighbouring fields such as engineer-
ing, computer science, public health or actuarial science, where specific knowledge is present
on the problem at hand, allowing the development of clever and perhaps computationally
challenging algorithms often replacing more labour intensive procedures of the past. These
algorithms are often defined in such a way that they can change and learn over time via
some optimization criteria and an efficient validation procedure. One example of such work
relevant to the work of this paper is Muñoz and van der Laan (2012) where an impressive
algorithm is developed to solve a complicated survival problem. The introduced method-
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ology is inspired by machine learning: the validation procedure is called a Super Learner.
However, while the Super Learner is optimal in some sense, see van der Laan et al. (2007),
then it is not optimal in the more detailed mathematical statistical sense that we consider in
this paper. And this is not only because Muñoz and van der Laan (2012) consider piecewise
constant hazard models that are less efficient than kernel smoothers. It is also because the
validation theory provided by Muñoz and van der Laan (2012) does not provide the math-
ematical detail promoted in this paper, and therefore crucial insight of noisy second order
components is not included in the theory. The approach of Muñoz and van der Laan (2012)
is just one among many machine learning inspired survival analyses approaches. This pa-
per considers one dimension only. Multidimensional cross-validation and one-dimensional
cross-validation are closely related and mathematical definitions are similar. However, even
in the one-dimensional case we face challenging theoretical, as well as practical issues, with
cross-validation being too noisy and unstable and to such an extend that we cannot any
longer recommend cross-validation in one dimension without some amendment for the noise
involved. Our intention is that multidimensional big data type of problems, with further
issues with data sparsity and noisy cross-validation, should benefit in the future from the
insight on cross-validation analyses as provided in this paper. The mathematical point
of view of this paper was perhaps initiated via the early contribution of Hall and Marron
(1987) that provided a decision theoretical framework to distinguish between plug-in esti-
mators, aiming at minimizing a mean integrated squared error, and cross-validation aiming
at minimizing the infeasible stochastic integrated squared error. They concluded that plug-
in did better from an asymptotic perspective even when the aim was the explicit aim of
cross-validation: to get as close as possible to the infeasible minimization of the integrated
squared error. One could view this as the foundation of a new decision theoretical frame-
work to understand the quality of kernel bandwidth selection; a tractable place to start
when understanding the complicated world of model selection. Hall and Johnstone (1992)
pointed out that for any bandwidth selector there are two sources of noise for kernel den-
sity estimation, one that one can never get rid of and another one that seems to differ for
different methods. The second source of noise can theoretically go as low as to zero such
that one was left with the first noise component as a lower bound on noise. The plug-in
type of methods had considerable lower second-component noise than cross-validation and
plug-in was very popular in practice in the nineties, with Sheather and Jones (1991) being
the perhaps most popular single method. However, plug-in methods depend on complicated
underlying mathematical detail that does not easily generalize to new problems in the same
straightforward way as cross-validation does. This is perhaps the single most important
reason why cross-validation has regained its importance and is used for a wide variety of
complicated problems in mathematical statistics, big data, machine learning and artifi-
cial intelligence. Hart and Yi (1998) introduced the concept of indirect cross-validation,
formulated in nonparametric kernel regression, which simply meant that cross-validation
was performed on an alternative kernel and the bandwidth was scaled back to the original
kernel used for estimation. Hart and Yi (1998) suggested to use one-sided kernels as the
alternative kernels because of their good practical performance and simple rescaling. In
density estimation Savchuk et al. (2010) suggested a combination of a normal-bandwidth
kernel and an oversmoothed kernel as alternative kernel to achieve the same mathematical
statistical asymptotic performance as the plug-in estimator without the need of a pilot.
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However, there was one catch with the elegant approach of Savchuk et al. (2010). Their
approach needed to estimate some tuning parameters to decide the relative weight of the
oversmoothed kernel that was contributing to the asymptotic noise via some term of lower
order. So, even though Savchuk et al. (2010) in principle did pilot free estimation then there
was still some tuning going on and some extra terms of just slightly lower order. And that
was perhaps exactly the problem of the original plug-in methods as in Sheather and Jones
(1991): that something with lower order noise had to be estimated, the pilot, and terms of
slightly lower order had to be ignored in the asymptotic results. In this paper we define
three dogmas for a modern kernel smoothing estimator:

1. It should be a direct estimation based on principles without complicated mathematical
adjustments.

2. Extra terms of slightly lower order are not allowed in the expansions.

3. Further smoothing than those necessary for the original estimator is not allowed to
be assumed while analysing the quality of the bandwidth selector.

The original cross-validation estimator and the approach of Hart and Yi (1998) lives
up to all three dogma rules while the plug-in type estimators of e.g. Sheather and Jones
(1991) and Savchuk et al. (2010) violate all three. We believe this to be the reason why
Mammen et al. (2011,2014) concluded that their double one-sided kernel density bandwidth
selector, directly inspired by Hart and Yi (1998), worked better in practice than the estima-
tors of Sheather and Jones (1991) and Savchuk et al. (2010). The fundamental principles of
this paper are therefore the three dogmas above and the decision theoretical framework of
Hall and Marron (1987), and this has let us to explore double one-sided cross-validation and
one-sided cross-validation even further because of their apparent practical superiority on the
market of current kernel bandwidth selectors. A detailed investigation of both sides of local
one-sided bandwidth selection showed us a perhaps surprising fact. While the left-sided
and the right-sided cross-validation procedures have the same mathematical statistical be-
haviour, they do perform very differently in practice. Often one of the two sides breaks down
completely. Double one-sided cross-validation works better than one-sided cross-validation
in a wide variety of kernel smoothing problems, see for example Mammen et al. (2011,2014),
Gámiz et al. (2013a,b, 2016). A closer investigation going through local features of individ-
ual simulation samples reveals that behind a good double one-sided cross-validation result
often hides an average of a good one-sided estimator and a somehow random result from
the other side. The suggestion of this paper is to improve the stability of one-sided cross-
validation via a local information principle inspecting at every single local point whether to
use the right side or the left side for cross-validation. This approach is stable in its practical
performance, it obeys the three above dogmas and it provides the exact same asymptotic
performance as the less stable one-sided and double-sided competitors mentioned above.
We call the new approach best one-sided cross-validation. This paper furthermore intro-
duces the mathematical statistical approach of Hall and Marron (1987) to multiplicative
bias corrected local linear kernel hazard estimators and it introduces asymptotic theory
and practical implementation of best one-sided-cross-validation for these multiplicative bias
corrected hazard estimators. Multiplicative bias correction is known to improve the practical
implementation of kernel hazard estimation, see Nielsen (1998) and Nielsen and Tanggaard
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(2001). This parallels insights from the more researched world of kernel density estima-
tion, see for example Jones et al. (1995) and Jones and Signorini (1997). The latter went
through a series of small sample studies of kernel density estimation procedures to conclude
that multiplicative bias correction seemed to be the best. The contribution of this paper is
therefore also to update mathematical statistical theory and practice to the perhaps best
practically performing kernel hazard estimator we have: the multiplicative bias corrected
local linear kernel hazard estimator.

The rest of the paper is organized as follows. In Section 2 we describe the link between
our proposal and methods in machine learning. In Section 3 we formulate the model we
assume in the paper and present two hazard estimators, namely the local linear estimator
and its multiplicative bias correction. Bandwidth selection for these estimators through
cross-validation and the double one-sided cross-validation method of Gámiz et al. (2016) is
described in Section 4, and our new best one-sided cross-validation method is suggested.
The asymptotic properties of all presented validated bandwidths are analysed in Section
5. Assumptions are deferred to Appendix A and proofs are provided in the Supplementary
Material. A further investigation of the theoretical properties of bandwidth selectors is
described in Appendix B. Two case studies show the applicability of our proposals, which are
described in Section 6. In Section 7 we describe simulation experiments to evaluate the finite
sample properties of our proposal. The main findings from the simulations are discussed
in Section 8 along with further insights about the asymptotic properties of bandwidth
selectors. Final conclusions are drawn in Section 9. All numerical calculations have been
performed with R and the methods proposed in this paper have been implemented in the
DOvalidation package (Gámiz et al., 2017).

2. Training and learning versus cross-validation and adjusted

cross-validation

To motivate our research beyond a wider crowd than experts in nonparametric hazard
estimation, our point of view is formulated below via standard vocabulary from machine
learning and artificial intelligence. Let us assume we observe n individuals over some time
that could potentially be filtered via truncation and censoring, and let A be a training
set and B be a learning set such that the two sets united equals the set {1, . . . , n}. Let
for the purpose of a discussion the number of elements of A be 80% of n and the num-
ber of elements in B be 20% of n. Then a standard approach to validation, see again
Muñoz and van der Laan (2012), would be to estimate the hazard on the training set and
evaluate it via the learning set. Under some standard independence assumptions this will
lead to a decrease in efficiency of estimation itself corresponding to ignoring 20% of the
data set and it will decrease the efficiency on the validation approach, compared to cross-
validation and the theoretical approach considered in this paper, corresponding to ignoring
80% of the data set. One could of course consider all possible combinations of training
and learning sets and average all these validations into one single validation principle or
learning principle. This would correspond to a computationally inefficient cross-validation.
In conclusion: even if all possible combinations of trainers and learners are calculated,
we end up with standard cross-validation with the well known problems of data sparsity
and noise. With the help of the theory originally developed by Hall and Marron (1987)
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in the kernel density context, we will in this paper, in the kernel hazard context, consider
more efficient use of data when estimators are validated or when trainers are learning. It
turns out that this is indeed possible via relatively straightforward adjustments of standard
cross-validation.

3. The counting process model and kernel hazard estimators

In this section we formulate events via counting processes. Counting processes are well
designed when event data are filtered for example via truncation or censoring. An individual
zero-one valued exposure process simply keeps tracks on whether an individual is under risk
or not at any particular point in time. We assume that individuals are independent and
that data filtering is non-informative. Formally, we observe n individuals, i = 1, . . . , n. Let
Ni count observed failures for the ith individual in the time interval [0, T ], Ni can take
values 0 or 1. We assume that Ni is a one-dimensional counting process with respect to
an increasing, right continuous, complete filtration Ft, t ∈ [0, T ], i.e., it obeys the usual
conditions (Andersen et al., 1993, p. 60). We assume Aalen’s multiplicative model (Aalen,
1978) where the random intensity is written as λi(t) = α(t)Yi(t), with no restriction on the
functional form of the hazard function α(·). Here Yi is a predictable process taking values
0 or 1, indicating (by the value 1) when the ith individual is at risk and under observation.
We assume that (N1, Y1) , . . . , (Nn, Yn) are independent and identically distributed for the n
individuals. With these definitions λi is predictable and the processes Mi(t) = Ni(t)−Λi(t),
i = 1, . . . , n, with Λi(t) =

∫ t
0 λi(s) ds, are square integrable local martingales.

As an example we illustrate how the above stochastic processes look like in the case
of independent and non-informative left truncation and right censoring, where n tuples
(Li, Zi, δi), i = 1, . . . , n, are observed. Here Li is the time the ith individual enters the
study; Zi is the time ith individual leaves the study either because an event has happened
or because of right censoring; and δi is binary and equal to one if an event, for example
death or an onset of a disease, is the reason for the ith individual to leave the study, and the
value is zero when the reason for the ith individual to leave the study was uninformative
right censoring. In this case, the process Yi above would be Yi(t) = I(Li ≤ t < Zi), and
Ni(t) = I(Zi ≤ t)δi, where I(·) is the indicator function. Hereafter we will work in the
convenient and general stochastic process formulation only.

The local linear kernel hazard estimator in our general stochastic process formulation
was introduced by Nielsen and Tanggaard (2001) and it is defined as

α̂LL
b,K(t) =

n∑

i=1

∫ T

0
K̄t,b(t− s)dNi(s), (1)

with the stochastic local linear kernel

K̄t,b(t− s) =
a2,K(t)− a1,K(t)(t− s)

a0,K(t)a2,K(t)− {a1,K(t)}2
Kb (t− s) , (2)

where Kb(u) = b−1K(u/b), aj,K(t) =
∫ T
0 Kb (t− s) (t − s)jY (s)ds, for j = 0, 1, 2, and

Y (t) =
∑n

i=1 Yi(t) is the aggregated risk process. Here K is a kernel function with support
[−1, 1] and b > 0 is the bandwidth parameter.
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The local linear kernel K̄t,b satisfies the properties:
∫ T
0 K̄t,b(t−s)Y (s)ds = 1,

∫ T
0 K̄t,b(t−

s)(t−s)Y (s)ds = 0 and
∫ T
0 K̄t,b(t−s)(t−s)2Y (s)ds > 0. Thus, K̄t,b can be interpreted as a

second order kernel with respect to the stochastic measure µ, where dµ(s) = Y (s)ds. Defin-

ing the aggregated failure process, N(t) =
∑n

i=1Ni(t), we can write α̂LL
b,K(t) =

∫ T
0 K̄t,b(t −

s)dN(s).
The multiplicative bias corrected estimator constructed from the local linear hazard

estimator is defined as

α̂MBC
b,K (t) =

n∑

i=1

∫
K̄MBC

t,b (t− s)α̂LL
b,K(t){α̂LL

b,K(s)}−1dNi(s), (3)

where the multiplicative kernel is

K̄MBC
t,b (t− s) =

aMBC
2,K (t)− aMBC

1,K (t)(t− s)

aMBC
0,K (t)aMBC

2,K (t)− {aMBC
1,K (t)}2

{
α̂LL
b,K(s)

}2
Kb (t− s) , (4)

with aMBC
j,K (t) =

∫ T
0 Kb (t− s) (t− s)j

{
α̂LL
b,K(s)

}2
Y (s)ds, for j = 0, 1, 2.

4. Cross-validation and best one-sided cross-validation of our two

estimators

The two kernel hazards estimators considered in this paper depend on a bandwidth pa-
rameter that determines the smoothness degree of the resulting estimates. Choosing the
bandwidth parameter is a crucial problem that starts by defining what the optimal band-
width would be, so it can be estimated from data.

Let α̂b,K denote a kernel hazard estimator with bandwidth b and kernel K, which can
be any of the two defined in (1) or (3). Ideally we would like a bandwidth parameter b that
minimizes the integrated squared error (ISE) defined as

∆K(b) = n−1
n∑

i=1

∫ T

0
{α̂b,K(s)− α(s)}2 Yi(s)w(s)ds,

where w(·) is some weight function. However, the minimizer of the integrated squared
error, b̂ISE,K , depends on the unknown hazard function and it is infeasible in practice. In

this paper we consider b̂ISE,K as the optimal bandwidth and in this section we present
estimates based on the cross-validation method. We refer the reader to Gámiz et al. (2016)
for the history of cross-validation in kernel hazard estimation based on counting processes.

First notice that minimizing ∆K(b) is equivalent to minimizing

n−1

[
n∑

i=1

∫ T

0
{α̂b,K(s)}2 Yi(s)w(s)ds− 2

n∑

i=1

∫ T

0
α̂b,K(s)α(s)Yi(s)w(s)ds

]
,

and only the second term depends on the unknown hazard. The cross-validation approach
estimates this second term from the data replacing α(s)ds by its empirical counterpart
dNi(s). The cross-validated bandwidth, denoted by b̂CV,K , is therefore the minimizer of

Q̂K(b) = n−1

[
n∑

i=1

∫ T

0
{α̂b,K(s)}2 Yi(s)w(s)ds− 2

n∑

i=1

∫ T

0
α̂
[i]
b,K(s)w(s)dNi(s)

]
, (5)
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where α̂
[i]
b,K(s) is the estimator arising when the data set is changed by setting the stochastic

process Ni(s) equal to 0 for all s ∈ [0, T ].
A practical and theoretical improvement of cross-validation was given in Gámiz et al.

(2016) that developed double one-sided cross-validation (DO-validation), as a simple average
of two indirect cross-validated bandwidths. Indirect cross-validation makes use of the fact
that, under mild regularity conditions, asymptotically optimal bandwidths for two kernel
estimators with different kernels K and L differ by a factor that only depends on the
two kernels K and L. In indirect cross-validation one applies cross-validation to a kernel
estimator with kernel L, and afterwards one multiplies the cross-validation bandwidth by
the factor (depending on K and L) to get a bandwidth for the kernel estimator with kernel
K. Such a construction makes sense if cross-validation for a kernel estimator with kernel L
works better than cross-validation for a kernel estimator with kernel K. Double one-sided
cross-validation averages the two indirect cross-validation bandwidths based on one-sided
kernels: the left-sided KL(u) = 2K(u)I(u < 0), or the right-sided KR(u) = 2K(u)I(u > 0).
More specifically, two one-sided cross-validation criteria, Q̂KL

(b) and Q̂KR
(b), are defined as

in (5) but replacing K with KL and KR, respectively. Denoting by b̂CV,KL
and b̂CV,KR

their
minimizers, the double one-sided cross-validation bandwidth estimate is the (conveniently)
weighted average of these

b̂DO,K = ρ

{
b̂CV,KL

+ b̂CV,KR

2

}
.

For the local linear hazard estimator defined in (1), the factor ρ is

ρLL =

{
R(K)

R(K̄∗
L)

µ2(K̄
∗
L)

2

µ2(K)2

}1/5

. (6)

Here, for a general kernel L, L̄∗ denotes the equivalent local linear kernel defined as

L̄∗(u) =
µ2(L)− µ1(L)u

µ2(L)− µ1(L)2
L(u), (7)

where µl(L) =
∫
ulL(u)du, for l = 1, 2, and R(L) =

∫
L2(u)du. Notice that L̄∗ = L if L is

symmetric.
For the multiplicative bias corrected estimator, α̂MBC

b,K , defined in (3), the factor ρ be-
comes

ρMBC =

{
R(ΓK)

R(ΓK̄∗

L

)

µ2(K̄
∗
L)

4

µ2(K)4

}1/9

, (8)

where ΓL(u) = 2L(u)− L(u) ∗ L(u) is the kernel obtained by twicing the kernel L. Here ∗
denotes the convolution operator.

The asymptotic theory developed in Gámiz et al. (2016) for the local linear hazard
estimator showed that left- and right-sided cross-validation have the same asymptotic prop-
erties, but different finite sample performance. There are situations where one of the two
one-sided cross-validation methods breaks down so the averaging strategy of double one-
sided cross-validation becomes inappropriate. The natural reaction in these cases would be
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to take the side which is working fine. One common reason for one of the two one-sided
cross-validated bandwidths to break down is the lack of occurrences (or exposures) in one
of the two directions. Best one-sided cross-validation (BO-validation), introduced in this
paper simply uses the one-sided version that, via local information, is predicted to work
best at every single point t. There can therefore be both left-sided and right-sided kernels
involved in best one-sided cross-validation. Imagine for example that the estimation interval
is (0, 1), where two boundaries are present, then one would expect to use different sided
kernels for a t close to the left boundary 0 and for a t close to the right boundary 1.

For the local linear hazard estimator we define the kernel estimator needed for best
one-sided cross-validation as

α̂BO,LL
b,K (t) =

∫ T

0

[
K̄t,b;L(t− s)ξb(t) + K̄t,b;R(t− s) {1− ξb(t)}

]
dN(s), (9)

where K̄t,b;L and K̄t,b;R are respectively the left and right versions of the local linear kernel
K̄t,b in (2), and ξb(t) is a stochastic function, depending on the estimation time t and the
bandwidth b, which takes the value 1 when the “best” side to consider is the indicated
by the kernel KL, and the value 0 otherwise. The combination of one-sided kernels that
appears in the integrand of expression (9) is a kernel function which we denote as

K̄BO,LL
b,K (t− s) = K̄t,b;L(t− s)ξb(t) + K̄t,b;R(t− s) {1− ξb(t)} . (10)

Thus we write the estimator as α̂BO,LL
b,K (t) =

∫ T
0 K̄BO,LL

b,K (t− s)dN(s).
For each time t, to designate which side is “best”, ξb(t) can be defined in terms of the

occurrence process by

ξOb (t) = I

(∫ t

t−b
dN(s) <

∫ t+b

t
dN(s)

)
,

or the exposure process by

ξEb (t) = I

(∫ t

t−b
Y (s)ds <

∫ t+b

t
Y (s)ds

)
. (11)

With any of these ξOb or ξEb , the best one-sided cross-validation bandwidth estimate is
defined as

b̂LLBO,K = ρLL argmin
b

Q̂BO,LL
K (b), (12)

where Q̂BO,LL
K is the cross-validation score in (5) calculated with the kernel estimator

α̂BO,LL
b,K (t), defined in (9). In a similar way we define the best one-sided cross-validation

bandwidth estimate for the multiplicative bias corrected estimator, b̂MBC
BO,K , as in (12) but

replacing the factor ρLL with ρMBC, given in (8), and defining the best one-sided cross-
validation score, Q̂BO,MBC

K , with the hazard estimator

α̂BO,MBC
b,K (t) =

∫ T

0

[
K̄MBC

t,b;L (t− s)
α̂LL
b,KL

(t)

α̂LL
b,KL

(s)
ξb(t) + K̄MBC

t,b;R (t− s)
α̂LL
b,KR

(t)

α̂LL
b,KR

(s)
{1− ξb(t)}

]
dN(s).

(13)
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5. Asymptotic theory

In this section we develop theory for the asymptotic behaviour of bandwidth selectors
for the local linear hazard estimator in (1), and its multiplicative bias correction in (3).
For each estimator we prove the asymptotic normality for bandwidths selectors based on
cross-validation, the double one-sided cross-validation of Gámiz et al. (2016) and the new
best one-sided cross-validation. Our theoretical results thus extend the results given in
Gámiz et al. (2016), by including the new best one-sided cross-validation for local linear
hazard estimator and considering its multiplicative bias correction.

Recall that the integrated squared error of a kernel hazard estimator, α̂b,L, with band-
width b and kernel L, was defined as above as

∆L(b) = n−1

∫ T

0
{α̂b,L(t)− α(t)}2w(t)Y (t)dt, (14)

and its minimizer denoted as b̂ISE,L. Hereafter we will make explicit reference to the con-
sidered hazard estimator using superscripts (LL for the local linear and MBC for the mul-
tiplicative bias correction). Besides a kernel denoted by K is assumed to be symmetric,
while we use the notation L for a general kernel that can be asymmetric, as the one-sided
kernels involved in double one-sided cross-validation and best one-sided cross-validation (see
assumption A1 in Appendix A).

Let consider first the local linear hazard estimator, α̂LL
b,L, given in (1). Following the

same arguments described in Nielsen and Tanggaard (2001), the error α̂LL
b,L(t) − α(t), can

be decomposed as, α̂LL
b,L(t)−α(t) = V LL

b,L (t)+BLL
b,L(t), where B

LL
b,L is a stable part converging

in probability to zero,

BLL
b,L =

∫ T

0
L̄t,b(t− s) {α(s)− α(t)}Y (s)ds; (15)

and V LL
b,L is a variable part converging to a Normal distribution,

V LL
b,L (t) =

∫ T

0
L̄t,b(t− s)dM(s). (16)

Using the above decomposition we can expand the integrated squared error for the local lin-
ear estimator, using standard martingale theory along with the approach of Mammen and Nielsen
(2007). In Lemma 4 in the Supplementary Material we show that, under some regularity
assumptions, ∆LL

L (b) in (14) is asymptotically equivalent to

MLL
L (b) = b4

µ2(L̄
∗)2

4

∫ {
α′′(t)

}2
γ(t)w(t)dt+ (nb)−1R

(
L̄∗

) ∫
α(t)w(t)dt,

where γ(t) = n−1E [Y (t)] is the expected exposure function. From this approximation a
deterministic optimal bandwidth for the local linear estimator with kernel L is defined as

bLLMISE,L = CLL
0,Ln

−1/5 with CLL
0,L =

[
R
(
L̄∗

) ∫
α(t)w(t)dt

µ2(L̄∗)2
∫
{α′′(t)}2 γ(t)w(t)dt

]1/5

. (17)
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Our main result in this section states the asymptotic normality of the three bandwidth
estimates for the local linear hazard estimator, cross-validation, b̂LLCV,K , double one-sided

cross-validation, b̂LLDO,K , and best one-sided cross-validation, b̂LLBO,K ; as well as the infeasible

bandwidth b̂LLMISE,K . Note that the latter is the optimal bandwidth targeted by plug-in
bandwidth selection rules. The proof of the theorem is provided in the Supplementary
Material.

Theorem 1 Under assumptions A1–A3 in Appendix A, the bandwidth selectors, b̂LLBO,K ,

b̂LLDO,K ,̂bLLCV,K , and b̂LLMISE,K , for the local linear estimator with kernel K satisfy

n3/10
(
b̂LLBO,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

BO,K

)

n3/10
(
b̂LLDO,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

DO,K

)

n3/10
(
b̂LLCV,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

CV,K

)

n3/10
(
b̂LLMISE,K − b̂LLISE,K

)
−→ N

(
0, SLL

2 + SLL
1 ΨLL

MISE,K

)

where

SLL
1 =

1

25

R(K)−7/5
∫
α2(t)w2(t) dt

µ2(K)6/5
{∫

α′′(t)2γ(t)w(t) dt
}3/5 {∫

α(t)w(t) dt
}7/5

,

SLL
2 =

4

25

R(K)−2/5
∫
α′′(t)2γ(t)w2(t)α(t) dt

µ2(K)6/5
{∫

α(t)w(t) dt
}2/5 {∫

α′′(t)2γ(t)w(t) dt
}8/5

,

and

ΨLL
BO,K = ΨLL

DO,K =

∫ {
R (K)

R
(
L̄∗

) (HL −GL)
(
ρLLu

)
−HK(u)

}2

du,

ΨLL
CV,K =

∫
{GK(u)}2 du,

ΨLL
MISE,K =

∫
{HK(u)}2 du,

defining the functions GL(·) and HL(·) as

GL(w) = I (w 6= 0) 2L̄∗
1(w),

HL(w) = I (w 6= 0)

∫
L̄∗(u)

{
L̄∗
1(u+ w) + L̄∗

1(u− w)
}
du,

where L̄∗
1(u) = −L̄∗(u)− uL̄∗′(u), with L = K and L = KL.

Remark 2 Gámiz et al. (2016) pointed out that all bandwidth estimates have similar asymp-
totics with the only difference of the factor ΨLL

·,K . These authors considered three common
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Table 1: Comparison of asymptotic variances among bandwidth selectors. Factors Ψ•
•,K

defined in Theorems 1 and 3, are shown for the local linear hazard estimator
and its multiplicative bias correction, with three common symmetric kernels K:
Epanechnikov, quartic and sextic.

Local linear estimator Multiplicative bias correction
Method Epanechnikov Quartic Sextic Epanechnikov Quartic Sextic

BO-validation 1.09 0.95 1.18 4.41 2.44 2.05
DO-validation 1.09 0.95 1.18 4.41 2.44 2.05
Cross-validation 3.60 2.86 3.49 9.87 6.10 6.50
Plug-in 0.36 0.46 0.59 0.84 0.95 1.31

choices of the kernel K (Epanechnikov, quartic and sextic kernels) and calculated the nu-
merical value of this factor (multiplied by 2 for convenience in this former paper). It allows
the comparison of the asymptotic performance of bandwidth selectors. These numerical val-
ues are reported in the first rows of Table 1, where now we have added the new best one-sided
cross-validation. Notice that the actual values of SLL

1 and SLL
2 depend on the unknown haz-

ard function α and its derivatives, but also on the exposure function γ, which are specific to
the inference problem. In Appendix B.1 we have calculated the ratio of these two terms for
one particular hazard model. The idea is to find out whether the discrepancy in the values
of ΨLL

·,K among bandwidth selectors shown in the table could be misleading in terms of the

actual variances. For the considered model the term SLL
1 is almost a half of SLL

2 , both when
exposure time goes zero and infinity. For the multiplicative bias corrected hazard estimator
we will discuss in Remark 4 that the corresponding S1 term can completely dominate the
term S2 in certain situations.

Consider now the multiplicative bias correction of the local linear hazard defined in (3),
α̂MBC
b,L , with bandwidth b and kernel L. As for the local linear estimator above, we define

the corresponding integrated squared error for its multiplicative bias correction as in (14)
and denote it as ∆MBC

L (b). We denote its minimizer as b̂MBC
ISE,L.

We consider the decomposition α̂MBC
b,L (t)−α(t) = BMBC

b,L (t)+V MBC
b,L (t), where BMBC

b,L (t) is

a stable term converging in probability to zero, and V MBC
b,L (t) is a variable term converging

to a Normal distribution. These two terms are defined as follows:

V MBC
b,L (t) =

∫
fMBC
t,b (s)dM(s)

where

fMBC
t,b (s) = L̄MBC

t,b (t− s)
α̂LL
b,L(t)

α̂LL
b,L(s)

+ L̄t,b(t− s)−

∫ T

0
L̄MBC
t,b (t− u)

α̂LL
b,L(t)

α̂LL
b,L(u)

L̄u,b(u− s)Y (u)du

with L̄MBC
t,b (t− s) defined as in (4) for the kernel L,

11
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and

BMBC
b,L (t) = BLL

b,L(t) +

∫
L̄MBC
t,b (t− s)α̂LL

b,L(t)
{
α̂LL
b,L(s)

}−1
BLL

b,L(s)Y (s)ds

=

∫
L̄MBC
t,b (t− s)α̂LL

b,L(t) {βb,L(t)− βb,L(s)}Y (s)ds,

with βb,L(s) = {α̂LL
b,L(s)}

−1BLL
b,L(s), where BLL

b,L and V LL
b,L are the stable and variable terms

for the local linear estimator given in (15) and (16), respectively.
Using the above decomposition and derivations similar to the local linear case we can

expand the integrated squared error of the multiplicative bias corrected estimator. In
Lemma 7 in the Supplementary Material we show that, under some regularity assumptions,
∆MBC

L (b) is asymptotically equivalent to

MMBC
L (b) = b8

µ2(L̄
∗)4

16

∫
h(t)2γ(t)w(t)dt+ (nb)−1R (ΓL̄∗)

∫
α(t)w(t)dt,

with h(t) = α(t) {α′′(t)/α(t)}′′. From this approximation a deterministic optimal band-
width for the multiplicative bias corrected estimator with kernel L is defined as

bMBC
MISE,L = CMBC

0,L n−1/9; CMBC
0,L =

{
R (ΓL̄∗)

∫
α(t)w(t)dt

µ2(L̄∗)4

2

∫
h(t)2γ(t)w(t)dt

}1/9

, (18)

where ΓL̄∗(u) = 2L̄∗(u) − L̄∗(u) ∗ L̄∗(u) is the kernel obtained by twicing the equivalent
kernel, L̄∗, given in (7).

The following theorem states the asymptotic normality of the three bandwidth estimates,
as well as the minimizer of the mean integrated squared error, for the multiplicative bias
corrected hazard estimator with kernel K. The proof is provided in the Supplementary
Material.

Theorem 3 Under assumptions A1, A2’ and A3’, the bandwidth selectors b̂MBC
BO,K , b̂MBC

DO,K ,

b̂MBC
CV,K , and b̂MBC

MISE,K satisfy

n3/18
(
b̂MBC
BO,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

BO,K

)

n3/18
(
b̂MBC
DO,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

DO,K

)

n3/18
(
b̂MBC
CV,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

CV,K

)

n3/18
(
b̂MBC
MISE,K − b̂MBC

ISE,K

)
−→ N

(
0, SMBC

2 + SMBC
1 ΨMBC

MISE,K

)

where

SMBC
1 =

21/3

92
R (ΓK)−5/6 ∫ α(t)2w(t)2 dt

µ2(K)4/3
{∫

h(t)2γ(t)w(t) dt
}1/3 {∫

α(t)w(t) dt
}5/3

,

SMBC
2 =

210/3

92
R (ΓK)−2/3 ∫ h(t)2γ(t)w(t)2α(t) dt

µ2(K)4/3
{∫

α(t)w(t) dt
}2/3 {∫

h(t)2γ(t)w(t) dt
}4/3

,
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with

ΨMBC
BO,K = ΨMBC

DO,K =

∫ {
R (ΓK)

R (ΓL̄∗)

(
HΓ

L̄∗
−GΓ

L̄∗

)
(ρMBCu)−HΓK

(u)

}2

du,

ΨMBC
CV,K =

∫
{GΓK

(u)}2 du,

ΨMBC
MISE,K =

∫
{HΓK

(u)}2 du.

where the functions GL(·) and HL(·) are defined as in Theorem 1, with L = ΓK and L = ΓL̄∗,
defined above.

Remark 4 The result above shows that all bandwidth selectors have similar asymptotics
with the only difference of the factor ΨMBC

·,K . A similar conclusion was derived for the
local linear estimator. The three last columns of Table 1 show the value of this factor for
three common choices of K. As for the local linear estimator we have calculated the ratio
SMBC
1 /SMBC

2 for a particular hazard model, the results are shown in Appendix B.2. In this
case the term SMBC

1 , relative to the term SMBC
2 , is negligible when exposure time goes to

zero, but dominates completely (infinite times bigger) when exposure time goes to infinity.

6. Applications

6.1 Old-age mortality

Our first application is on fitting hazard mortality curves for old-age population. We con-
sider mortality data of women in Iceland in the calendar year 2006, with ages from 40
to 110. The same data were considered by Gámiz et al. (2016) and are available in the
DOvalidation R-package (Gámiz et al., 2017). This package provides also functions imple-
menting the hazard estimators and the bandwidth selection methods described above. The
data were obtained from the Human Mortality Database and consist of aggregated yearly
occurrences and exposures. Gámiz et al. (2016) showed that estimating the hazard from
these data is challenge at the oldest ages. The lack of exposure at the right end and the few
observed deaths induce a marked boundary effect precisely in the area of interest, the old
ages. For these data we have calculated the two hazard estimators described in this paper,
local linear and its multiplicative bias correction, using three bandwidth selectors: cross-
validation, double one-sided cross-validation and the new best one-sided cross-validation.
The cross-validation scores involved in these methods have been defined using a weighting
function such that w(s)Y (s) ≡ 1, so all points in the time interval where the hazard function
is estimated are evaluated with the same weight. This is different from Gámiz et al. (2016)
where the weighting function was chosen so only areas where the exposure is significant
contribute to the criteria. Notice that this makes an important difference in this data set
where the end of the time interval comprises almost no exposure.

Before looking at the resulting hazard estimates we shall look at the cross-validation
scores to be minimized for each bandwidth selection method. Figure 1 shows the cross-
validated scores for each method considering the multiplicative bias corrected estimator.
The local linear case looks quite similar and can be found in the Supplementary Material.
From these plots we can see that the left one-sided score is not well behaved for both
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Figure 1: Mortality data: bandwidth selection scores with multiplicative bias corrected
hazard estimator.
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hazard estimators. Therefore the average DO-validated bandwidth becomes unreliable, even
though the obtained values seem to be sensible (̂bDO = 27.3 for the local linear estimator
and b̂DO = 40 for its multiplicative bias correction). On the other hand the best one-sided
cross-validation method shows a clear minimum in both cases and, as expected, it moves
close to the one-sided cross-validated bandwidth that is working fine (the right side in this
case). Best one-sided cross-validation in this case has been calculated using the exposure
process, that is, for each time t we use the function ξEb (t) given in (11). However the results
are quite similar using the occurrence process instead. Figure 2 shows the resulting hazard
estimates from each method and type of hazard estimate. Note from these plots that the
multiplicative bias corrected hazard is more robust to the bandwidth choice than the local
linear. Also the new best one-sided cross-validation method seems to provide a reasonable
estimate for old-age mortality in both cases.

6.2 Prediction of outstanding liabilities in non-life insurance

We consider now a non-standard forecasting problem that arises in non-life insurance. The
goal is to forecast the number of future claims from contracts underwritten in the past, which
have not yet been reported. Typically actuaries are responsible of getting these forecasts,
which represent perhaps the most important number in the accounts of the company (see
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Figure 2: Comparison of hazard estimates from female mortality data in Iceland.
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Mart́ınez-Miranda et al. (2013) for a detailed background of this problem). Here we analyse
a data set of reported and outstanding claims from a motor business in UK. The same data
set was previously considered by Mart́ınez-Miranda et al. (2013) and consists of n = 1558
large claims reported between January 1990 and March 2012. From a statistical perspective
the data could be described as a sample {(X1, Z1), . . . , (Xn, Zn)}, where Xi denotes the
underwriting date of the ith claim, and Zi the corresponding reporting delay, this is, the
time between the underwriting date and the reporting date of the claim. The sample is right
truncated since it can be observed only those claims for which the underwriting time plus the
reporting delay is not greater than the calendar time of data collection. Hence data exist on
a triangle with Xi+Zi ≤ 31 March 2012, and Xi+Zi represents the calendar time. The aim
is to forecast the mass of the unobserved, future triangle, where Xi + Zi > 31 March 2012,
which corresponds to the number of claims underwritten in the past which have not been
reported yet. The problem is formulated assuming that the maximum reporting delay is 267
months, in the actuarial literature this assumption is described as the triangle is fully run
off. Another challenge of the data set for this problem is that the data are only available
in an aggregated way. This is a common feature of this kind of data in the reserving
departments of the insurance companies. This means that the available observations are
counts living in a triangle of dimension 267× 267. Specifically for our data set the triangle
has entries Nx,z =

∑n
i=1 I(Xi = x, Zi = z), with x, z ∈ {1, . . . , 267}, describing the number

of claims underwritten in the xth month and reported in the zth month.
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Mart́ınez-Miranda et al. (2013) showed that a multiplicative structured density model,
f(x, z) = f1(x)f2(z), can be used to forecast the claims where the components f1 and f2 are
the underwriting time density and the reporting time density, respectively. The assumption
of a multiplicative density means that the reporting delay does not depend on the under-
writing date. Using the counting process formulation considered in this paper, Hiabu et al.
(2016) solved the forecasting problem estimating the two density components using a time-
reversal approach. Data are transformed to the time reversed scale so the right-truncation
problem is replaced by the more tractable left-truncation. Using the same time-reversal
approach, we now use the hazard estimation methods presented in the previous sections
to estimate the backward hazard functions corresponding to the two components, under-
writing (α1) and reporting delay (α2). From these hazard estimates the density component
estimates can be derived multiplying by respective estimators of the survival functions.

From the above description we solve the forecasting problem considering both local
linear hazard estimator and its multiplicative bias correction. For each hazard component,
the bandwidth parameters for these estimators have been estimated using cross-validation,
double one-sided cross-validation and best one-sided cross-validation. In the three cases we
use weighting functions for the involved cross-validation scores that are appropriate for the
forecasting problem. Specifically, following the discussion in Hiabu et al. (2016), to estimate

α1 we consider weights w1(t) = Ŝ2
1(t)

{
1− Ŝ2(t)

}2
/Y1(t), where Ŝ1 and Ŝ2 are estimators

of the survival functions of each component (underwriting time and the reporting time
delay) on the reversed time scale; and Y1(t) is the risk process for the first component. In a
similar way we define the weights to estimate α2. As in the mortality study best one-sided
cross-validation has been calculated using the exposure process.

Figure 3 shows the forecasts of the number of claims reported in the future calendar
months. Table 2 shows these forecasts aggregated in years. The forecasts are given for each
hazard estimator and bandwidth estimate. We have also included the forecasts derived from
the chain ladder method, which involves histogram type estimators of the underwriting and
reporting density components. The chain ladder method is the classical approach used in
the insurance companies (see Mart́ınez-Miranda et al. (2013) for more details about this
approach). The plot of the forecasts shows that the classical insurance method chain ladder
is overestimating the liabilities, while the kernel hazard methods provide lower forecasts.
Previous empirical analyses with these data described in Mart́ınez-Miranda et al. (2013)
agree with this result and recommend multiplicative bias corrected local linear estimators
for this kind of data. Looking at the results from the kernel estimators we can see that
double one-sided cross-validation and best one-sided cross-validation provide similar fore-
casts when the local linear estimator is considered, but the results are quite different for
the multiplicative bias corrected estimator. The predicted total number of claims using
double one-sided cross-validated bandwidth is about 299, compared to 313 using best one-
sided cross-validation. Our concern is that double one-sided cross-validation might not be
behaving properly in this situation. A close inspection to the cross-validation scores that
are minimized to derive these bandwidth estimates reveals what is happening. Figures 4
and 5 show these cross-validation scores when the multiplicative bias corrected estimator is
considered for both underwriting and reporting delay components. From these plots we can
see that the right one-sided score completely breaks down for the underwriting time compo-
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Table 2: Forecasts of the number of claims to be reported in the future calendar years.

Year CLM LL-CV LL-DO LL-BO MBC-CV MBC-DO MBC-BO

2012 99.95 76.85 77.98 77.95 80.55 81.75 81.76
2013 97.23 75.06 75.52 76.86 81.18 75.82 81.68
2014 74.32 58.75 59.05 60.04 62.23 58.89 62.88
2015 49.18 38.88 39.06 39.44 40.31 38.81 41.20
2016 24.52 19.42 19.50 19.66 20.01 19.34 20.44
2017 11.61 9.35 9.39 9.44 9.60 9.45 9.76
2018 6.21 5.07 5.06 5.09 5.15 4.99 5.27
2019 3.24 2.54 2.53 2.52 2.52 2.53 2.61
2020 1.36 1.25 1.23 1.23 1.23 1.18 1.22
2021 0.99 1.03 1.02 1.02 0.99 0.95 0.95
2022 1.11 0.85 0.84 0.85 0.87 0.83 0.88
2023 1.06 0.71 0.71 0.73 0.81 0.80 0.85
2024 1.20 0.81 0.81 0.84 0.93 0.90 0.94
2025 1.14 0.91 0.92 0.95 0.97 0.93 0.94

> 2025 1.94 1.59 1.59 1.61 1.51 1.48 1.55

Total 375.07 293.07 295.20 298.23 308.86 298.69 312.92

nent, exhibiting several local minima. For the reporting delay component the score function
continues decreasing as the value of the bandwidth increases, so it reaches the minimum at
the upper limit of the search interval of bandwidths. The left one-sided score behaves more
reasonably for the underwriting component but again breaks down for the reporting de-
lay component. This means that one shouldn’t trust the double one-sided cross-validation
bandwidth derived from these two one-sided criteria, even though the derived estimates
in this case turned to be reasonable values, b̂DO = 55.8 for the underwriting time, and
b̂DO = 31.6 for the delay. On the contrary, the new best one-sided cross-validation method
provides bandwidth estimates of b̂BO = 43.4 for the underwriting time and b̂BO = 11.8 for
the delay, exhibiting well-behaved minimization scores as shown in Figure 4. Regarding
to the cross-validation method it exhibits a rather flat score in the underwriting compo-
nent leading to the large bandwidth estimate of b̂CV = 63.5, and a value of b̂CV = 11.6
for the delay that is close to the best one-sided cross-validated bandwidth. The impact of
the cross-validated bandwidths on the forecasts is moderated, about 309 predicted claims
compared to the 313 from best one-sided cross-validation. We have performed the same
inspection with the local linear estimators. These plots can be seen in the Supplementary
Material. The picture is again quite similar showing a poor performance of double one-sided
cross-validation, however the impact on the forecasts in this case is not substantial. The
total number predicted from cross-validation is about 293, compared to 295 from double
one-sided cross-validation and 298 for best one-sided cross-validation.

7. Finite sample performance

In this section we investigate the finite sample performance of the new best one-sided cross-
validation method for the local linear hazard estimator and its multiplicative bias correction.
We have considered the same five hazard models described in Gámiz et al. (2016) (see also
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Figure 3: Number of outstanding claims forecast using the local linear estimator and its
multiplicative bias correction.
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Figure 4: Underwriting component: bandwidth selection scores with multiplicative bias
corrected hazard estimator.
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Figure 5: Reporting delay component: bandwidth selection scores with multiplicative bias
corrected estimator.
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Supplementary Material). The first four models consist of mixtures of Beta densities. Model
5 shows an exponential increase common in hazard mortality rates as those described in
the first case study of Section 6. From each model we have simulated samples with three
different sample sizes and two sampling schemes, right censoring with and without left
truncation. For models 1 to 4 we have considered sample sizes n = 100, 1000, 10000, and
for model 5, n = 50000, 75000, 100000. The number of Monte Carlo replications for each
case has been always 500. We use the same mechanism to simulate data as in Gámiz et al.
(2016). It generates data in aggregated form (number of occurrences and exposure) for
an equally-spaced grid of size R defined on the time interval, and always produces right
censored samples. For models 1 to 4 the time interval is (0, 1) and we have defined the
grid length with δR = 1/(R + 1). For model 5 time lies in the interval (40, 110) and we
have defined the grid length with δR = 70/(R+ 1). The grid size has been chosen equal to
R = 500 in both cases. We shall denote the grid points by tr (r = 1, . . . , R). In the case of
samples without left truncation, for a sample of n individuals, the number of occurrences at
time tr, denoted as Or, have been generated from the binomial distribution Bi {Yr, α(tr)δR},
for r = 1, . . . , R. Here Yr denotes the size of the risk set at the beginning of the rth interval
of the grid. The total number of simulated occurrences does not sum to n. Some of the
simulated individuals are finally right censored, because they are still at risk at the end of
the interval. Therefore our simulated sample are right censored and the censoring rates are
around 20–30% for all models. When adding left truncation, independent truncation times
are generated from the Uniform distribution.

From the simulated aggregated data we have calculated the local linear hazard estima-
tor and its multiplicative bias correction using the sextic kernel: K(x) = 3003/2048(1 −
x2)6I(−1 < x < 1), as in the two data analyses above. For each hazard estimator we have
compared the best one-sided cross-validated bandwidth with cross-validation and double
one-sided cross-validation. The performance of the bandwidth estimates have been anal-
ysed with respect to the (Monte Carlo approximated) mean integrated squared error of the
resulting kernel hazard estimator. We shall refer to this performance measure as empirical
MISE, denoted as m1(̂b), for each bandwidth estimate b̂. As benchmarks in our analysis
we have considered two infeasible optimal bandwidths: the bandwidth minimizing the inte-
grated squared error criterion, b̂ISE, and the bandwidth minimizing the empirical MISE. To
compute all bandwidth estimates we have considered grids of 100 equally spaced bandwidth
values chosen around b̂ISE, for each model and sample size. All criteria have been defined
using a weighting function such that w(s)Y (s) ≡ 1, so all points in the time interval where
the hazard function is estimated are evaluated with the same weight. As we pointed out in
our first case study this is different from Gámiz et al. (2016), and it makes an important
difference in models such as Model 5 where the end of the time interval comprises almost
no exposure.

Table 3 summarizes the simulation results in the case of samples with right censoring
and left truncation. In this table bandwidth estimates are compared according to measure
m1. For convenience we report a relative measure to indicate when best one-sided cross-
validation outperforms cross-validation. The relative measure is defined as:

Rerr(BO) =
{
m1(̂bCV)−m1(̂bISE)

}
/
{
m1(̂bBO)−m1(̂bISE)

}
. (19)
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With this definition values ofRerr(BO) above 1 indicate that best one-sided cross-validation
outperforms cross-validation. An analogous relative measure, Rerr(DO), has been defined
for double one-sided cross-validation. Notice that Rerr(BO) greater than Rerr(DO) indi-
cates that best one-sided cross-validation outperforms double one-sided cross-validation. An
overall view of the numbers in the table confirms that best one-sided cross-validation for the
multiplicative hazard estimator always outperforms cross-validation, exhibiting Rerr(BO)
values above 1, and double one-sided cross-validation for all models except for few cases,
where double one-sided cross-validation provides slightly lower empirical MISE values.
The results for the local linear estimator show that double one-sided cross-validation and
best one-sided cross-validation behave quite similarly, both outperforming in general cross-
validation. The case of samples without left truncation is shown in Table 4. It brings
similar conclusions though in this case best one-sided cross-validation is beaten by double
one-sided cross-validation for Model 5. This case deserves a deeper analysis and it is shown
in Table 5. In this table we have shown the empirical MISE defined above and denoted by
m1(̂b), for each bandwidth estimate b̂, as well as the average of the bandwidth estimates for
all the samples (avg(̂b)), and we have included the left and right one-sided cross-validated
bandwidths, from which double one-sided cross-validation is derived. From these results we
can clearly see that the left one-sided bandwidth completely breaks down, for all sample
sizes and both hazard estimators, while the right side behaves well (notice the large values
of the empirical MISE for the left one-sided bandwidth in contrast with those values for the
right one-sided bandwidth). The average of the left and right one-sided bandwidths (which
double one-sided cross-validation performs) seems to be hiding the problem of the left side,
and sometimes it even provides quite reasonable values. Notice that the double one-sided
bandwidths are on average closer to the best ISE-optimal bandwidths than the best one-
sided cross-validation for the multiplicative bias corrected estimator. However this happens
because the double one-sided bandwidth is the average of a small left one-sided bandwidth
and a large right one-sided bandwidth. On the other hand best one-sided cross-validation
is behaving as the best of the two sides, as we would expect. A similar picture can be seen
when analysing the behaviour of double one-sided cross-validation for Model 4 in the case of
truncated samples (the full simulation results are provided in the Supplementary Material).

In summary, the simulation results indicate that best-one sided cross-validation and
double one-sided cross-validation do better than one-sided cross-validation (that sometimes
breaks down) and standard cross-validation. However, it is not always which one is the
better of best one-sided cross-validation or double one-sided cross-validation. We suggest
to try out both best one-sided and double one-sided cross-validation in any empirical study.

8. Discussion

The overall conclusion of our finite sample section is that double one-sided cross-validation
and best one-sided cross-validation are better than standard cross-validation, however,
there is no clear winner between double one-sided cross-validation and best one-sided cross-
validation. In practice we would suggest to consider both. It is also concluded that the
multiplicative bias corrected local linear hazard estimator is more often than not better
than the simpler local linear hazard estimator. There is a tendency that double one-sided
cross validation is better than best one-sided cross-validation for the simple local linear case,
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Table 3: Simulation results for datasets with right censoring and left truncation. Hazard
estimators and bandwidth selectors are compared by the relative measure Rerr(·)
defined in (19).

Model n LL-DO LL-BO MBC-DO MBC-BO

1 100 1.55 1.25 1.47 1.79
1000 2.32 2.00 0.97 2.88
10000 1.90 1.71 1.82 3.30

2 100 2.28 2.04 0.46 2.47
1000 2.42 1.99 0.15 3.66
10000 2.18 1.84 0.34 3.81

3 100 1.86 1.74 1.47 1.27
1000 0.96 0.99 0.82 1.19
10000 2.20 2.07 2.12 3.50

4 100 0.08 1.12 2.13 0.92
1000 2.51 1.91 2.30 1.08
10000 2.17 1.83 3.76 2.62

5 50000 1.62 1.70 1.77 2.09
75000 2.04 2.18 1.41 2.31

105 1.68 1.73 1.07 1.90

Table 4: Simulation results for datasets without left truncation. Hazard estimators and
bandwidth selectors are compared by the relative measure Rerr(·) defined in (19).

Model n LL-DO LL-BO MBC-DO MBC-BO

1 100 2.58 2.05 0.89 2.51
1000 2.62 2.27 1.24 4.60
10000 2.75 2.47 1.62 8.57

2 100 2.55 1.81 0.22 2.92
1000 2.70 2.29 0.10 3.51
10000 2.63 2.40 0.26 4.71

3 100 1.50 1.40 0.99 0.70
1000 2.72 2.33 0.74 3.40
10000 1.81 2.10 0.65 3.52

4 100 2.03 1.89 2.19 1.13
1000 2.09 2.03 1.28 0.90
10000 1.24 1.28 1.03 1.65

5 50000 0.80 6.45 5.33 1.60
75000 0.63 5.47 4.63 1.96

105 0.56 4.32 4.16 2.28
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Table 5: Performance of double one-sided cross-validation in simulations. The empirical
MISE (multiplied by 106), m1(̂b), and the average bandwidth estimates, avg(̂b),
are shown for samples generated from Model 5 without left truncation.

n ISE MISE CV OSCV-l OSCV-r DO BO

LL 50000 m1(̂b) 1.14 2.16 13.31 13424.45 3.04 16.29 3.03

avg(̂b) 9.71 22.48 18.09 2.82 10.99 6.91 10.98

75000 m1(̂b) 0.82 1.32 8.82 4835.00 1.92 10.28 1.92

avg(̂b) 9.37 20.91 16.18 3.57 9.77 6.67 9.76

105 m1(̂b) 0.53 0.86 4.44 1894.00 1.43 7.55 1.43

avg(̂b) 9.04 20.12 14.34 3.98 8.98 6.48 8.96

MBC 50000 m1(̂b) 0.33 0.72 11.84 203897.80 7.01 2.49 7.54

avg(̂b) 18.93 21.70 45.62 17.69 41.43 29.56 40.78

75000 m1(̂b) 0.23 0.43 5.74 92670.27 3.01 1.42 3.04

avg(̂b) 18.45 20.91 38.88 18.02 35.20 26.61 32.31

105 m1(̂b) 0.15 0.27 3.51 16302.04 1.65 0.96 1.63

avg(̂b) 17.87 20.12 32.85 19.01 30.79 24.90 27.20

while the performance is vice versa when using the multiplicative kernel hazard estimation.
The exception from this rule seems to be our finite sample study in Table 5 inspired by our
real-life mortality data.

In Appendix B we have studied how big the second noise component (the one that is
improved by our new bandwidth selectors) is compared to the first noise component in
the bandwidth selection (the one that is same across all the bandwidth selectors). Using
our real-life mortality data as inspiration, we investigate a simple version of a Gomperz-
Makeham shaped hazard and conclude that for the local linear hazard the second variance
component is almost a half of the first component, both when exposure time goes zero and
infinity. This picture is very different for the multiplicative hazard estimator, where the
second variance component is negligible when exposure time goes to zero, but dominates
completely (infinite times bigger) when exposure time goes to infinity. One can in other
words get all kinds of relationships between the second variance component and first variance
component. This calls for more research, but it seems already clear that there will be many
situations, where we cannot rely on simple cross-validation (not to mention less efficient
training-and-learning algorithms), because cross-validation has a very high second variance
component and that second variance component will occasionally dominate completely the
smoothing selection problem. We believe our findings to be relevant for machine learning,
big data and artificial intelligence in general, where over-reliance of simple training-and-
learning or cross-validation might lead to false-discoveries because of the noise involved.
Methods such as double one-sided cross-validation, best one-sided cross-validation, or other
improved smoothing procedures dampening the second noise component, therefore seem to
be a very important element of future research in machine learning and related fields.
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9. Conclusion

We have proposed a new bandwidth selection method for local linear hazard estimation
and its multiplicative bias correction. Our proposal is called best one-sided cross-validation
and consists of an improvement of the double one-sided cross-validation of Gámiz et al.
(2016). Best one-sided cross-validation solves the lack of stability of double one-sided cross-
validation in practice via a local information principle.

Our empirical studies show that best one-sided cross-validation provides a good strat-
egy for bandwidth selection for both local linear and multiplicative bias corrected hazard
estimators. Best one-sided cross-validation inherits the good properties of one-sided cross-
validation while avoiding the stability problems that double one-sided cross-validation some-
times faces. The current algorithm is only about optimisation of statistical inference. How-
ever, it could be also interesting to consider computational performance, see for example
Kapotufe and Verma (2017).

Detailed mathematical theory at the level of Hall and Marron (1987) and Gámiz et al.
(2016) is included. This type of theory is completely novel for the multiplicative bias
corrected hazard estimators. Theory on best one-sided cross-validation introduced in this
paper is of course also new for the local linear hazard estimator.
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Appendix A. Assumptions for asymptotic theory

Assumption A1. The kernels K and L are compactly supported (i.e. the support
is contained in [−CK , CK ] for some constants CK > 0). The kernels are continuous
on IR\{0} and have one-sided derivatives that are Hölder continuous on IR− = {x :
x < 0} and IR+ = {x : x > 0}, that is there exist constants c and d such that
|φ(x) − φ(y)| ≤ c|x − y|d for x, y < 0 or x, y > 0 with φ equal to K ′ or L′. The left-
and right-sided derivatives differ at most on a finite set. The kernel K is symmetric.

Assumption A2. For the expected exposure function γ(t) = n−1E {Y (t)} it holds that
γ ∈ C2([0, T ]), that it is strictly positive for t ∈ [0, T ], and that

sup
s∈[0,T ]

|Y (s)/n− γ(s)| = oP
{
(log n)−1

}
,

sup
s,t∈[0,T ],|t−s|≤CKb

|{Y (t)− Y (s)} /n− {γ(t)− γ(s)}| = oP

{
(nb log n)−1/2

}
,

where the constant CK is defined in assumption A1.
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Assumption A2’. Same conditions as in assumption A2 but replacing oP
{
(nb log n)−1/2

}

with oP
{
(nb)−1

}

Assumption A3. It holds that α ∈ C2([0, T ]), w ∈ C1([0, T ]). The second derivative
of α is Hölder continuous with exponent d > 0.

Assumption A3’. Same conditions as in assumption A3 but α ∈ C4([0, T ]) and its
fourth derivative is Hölder continuous.

Appendix B. Evaluation of the common variance terms

In Section 5 we compare bandwidth selectors by their asymptotic variances which are of the
form S2+S1Ψ, where Ψ is a factor that differs among bandwidth selectors, while the terms
S1 and S2 are common for all of them. For both the local linear and the multiplicative biased
corrected hazards, the factor Ψ only depends on the chosen kernels so we have evaluated
it for some common choices in Table 1. The terms terms S1 and S2 however depend on
the hazard function α, the exposure function γ and the weighting function w. Here we
evaluate the ratio S1/S2 for the two hazard estimators, considering a specific choice for
these functions. We consider a hazard function of the form α(t) = λ+ c exp(βt), where λ,
c and β are constants. This hazard specification characterizes the Gompertz-Makeham law
of mortality, where the empirical magnitudes for the parameters β and c are about 0.085
and 3 × 1031, respectively. For the weighting function we consider the case w(t) ≡ 1, and
for the exposure function the case γ(t) = 1{0≤t≤T}, for T > 0.

B.1 Local linear estimator

For the local linear hazard estimators the terms S1 and S2 are given by

SLL
1 =

1

25

R(K)−7/5
∫
α2(t)w2(t) dt

µ2(K)6/5
{∫

α′′(t)2γ(t)w(t) dt
}3/5 {∫

α(t)w(t) dt
}7/5

,

SLL
2 =

4

25

R(K)−2/5
∫
α′′(t)2γ(t)w2(t)α(t) dt

µ2(K)6/5
{∫

α(t)w(t) dt
}2/5 {∫

α′′(t)2γ(t)w(t) dt
}8/5

,

The ratio RLL = SLL
1 /SLL

2 , for γ(t) = 1{0≤t≤T} and w(t) ≡ 1, is given by

RLL =
SLL
1

SLL
2

=
1

4R(K)

∫ T
0 α2(t) dt

∫ T
0 α′′(t)2 dt

∫ T
0 α(t) dt

∫ T
0 α′′(t)2α(t) dt

For the choice α(t) = λ+ c exp(βt) the above integrals become

∫ T

0
α(t) dt =

c

β
(exp(βT )− 1) + λT

∫ T

0
α(t)2 dt =

c2

2β
(exp(2βT )− 1) + λ2T +

2λc

β
(exp(βT )− 1)
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∫ T

0
α′′(t)2 dt =

c2β3

2
(exp(2βT )− 1)

∫ T

0
α′′(t)2α(t) dt =

c3β3

3
(exp(3βT )− 1) +

λc2β3

2
(exp(2βT )− 1)

We substitute these results in the expression of RLL and take limits for T → ∞. We only
look at the leading terms in the numerator and the denominator (that is exp(4βT )) and
we get that RLL → 3/(16R(K)), as T → ∞. For the Epanechnikov kernels the limit is
5/16. Notice that the limit at zero is RLL → (4R(K))−1, which takes the value 5/12 for
the Epanechnikov kernel.

B.2 Multiplicative bias corrected estimator

For the multiplicative bias corrected estimator the terms are

SMBC
1 =

21/3

92
R (ΓK)−5/6 ∫ α(t)2w(t)2 dt

µ2(K)4/3
{∫

h(t)2γ(t)w(t) dt
}1/3 {∫

α(t)w(t) dt
}5/3

,

SMBC
2 =

210/3

92
R (ΓK)−2/3 ∫ h(t)2γ(t)w(t)2α(t) dt

µ2(K)4/3
{∫

α(t)w(t) dt
}2/3 {∫

h(t)2γ(t)w(t) dt
}4/3

,

where h(t) = α(t)(α′′(t)/α(t))′′.

We compute the ratio RMBC = SMBC
1 /SMBC

2 for the same choice of γ and w as before.
It yields to the following expression

RMBC =
SMBC
1

SMBC
2

=
1

8R(ΓK)1/6

∫ T
0 α2(t) dt

∫ T
0 h(t)2 dt

∫ T
0 α(t) dt

∫ T
0 h(t)2α(t) dt

For the choice α(t) = λ+ c exp(βt) the calculations are as follows:

∫ T

0
α(t) dt =

c

β
(exp(βT )− 1) + λT

∫ T

0
α(t)2 dt =

c2

2β
(exp(2βT )− 1) + λ2T +

2λc

β
(exp(βT )− 1)

∫ T

0
h2(t)dt =

∫ λ+c exp(βT )

λ+c
cβ7λ2 e

βt

y4
(2λ− y)2dy =

∫ λ+c exp(βT )

λ+c
β7λ

y − λ

y4
(2λ− y)2dy

=

∫ λ+c exp(βT )

λ+c
β7λ2

(
8

y3
λ2 −

4

y4
λ3 −

5

y2
λ+

1

y

)
dy

= β7λ2

[
4λ3

3y3
−

4λ2

y2
+ 5

λ

y
+ ln y

]y=λ+c exp(βT )

y=λ+c

.
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Here

h(t) = α(t)

(
d2

dt2
(
α′′(t)/α(t)

))
= cβ4λ

etβ

(λ+ cetβ)
2

(
λ− cetβ

)
,

and we have made the change of variable y = α(t), dy = cβeβtdt = β(y − λ) dt. Similarly

∫ T

0
h2(t)α(t) dt =

∫ λ+c exp(βT )

λ+c
cβ7λ2 e

βt

y3
(2λ− y)2dy =

∫ λ+c exp(βT )

λ+c
β7λ

y − λ

y3
(2λ− y)2dy

=

∫ λ+c exp(βT )

λ+c
β7λ2

(
8

y2
λ2 −

4

y3
λ3 −

5

y
λ+ 1

)
dy

= β7λ2

[
2λ3

y2
−

8λ2

y
− 5λ ln(y) + y

]y=λ+c exp(βT )

y=λ+c

We then substitute the above results in the expression of RMBC and take limits for T →
∞. To this goal we only look at the leading terms in the numerator and the denominator and
we get that RMBC → ∞ as T → ∞. And the ratio increases to ∞ as log(λ+c exp(βT )), this
is, at the linear rate βT . The limit for T → 0 is (8R(ΓK))−1/6, which for the Epanechnikov
kernel is about 0.13.
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