1,430 research outputs found

    In vitro malignant progression of cells derived from Abelson murine leukaemia virus-induced thymic lymphomas.

    Get PDF
    Cell lines derived from A-MuLV induced thymic lymphomas in BALB/c and C57BL/6 mice were analysed for their in vivo and in vitro potential of growth. Despite their immunogenicity, cell lines of BALB/c origin readily grew in syngeneic recipients. On the contrary, all cell lines of C57BL/6 origin failed to grow in immunocompetent hosts even though they were able to form tumours in immunosuppressed syngeneic mice. Among C57BL/6 lymphoma cells progression toward a more malignant phenotype was observed in TB6-3 cells, and in their derived clones, after several in vitro passages. This event was accompanied by the in vitro loss of requirement for exogenous growth factor(s) when tumorigenic TB6-3 cells were plated at high density. Moreover, culture medium from fully malignant TB-3 cells was mitogenic for mature T-lymphoma cells suggesting the involvement of an autocrine mechanism in the control of cell proliferation. Apparently, the viral oncogene (v-abl) is not directly involved in malignant progression since no differences between nontumorigenic and tumorigenic cells could be detected in A-MuLV integration patterns, v-abl specific mRNA expression, and P160gag-abl production

    Endotracheal intubation to reduce aspiration events in acutely comatose patients: a systematic review

    Get PDF
    Background: It is customary to believe that a patient with a Glasgow Coma Scale (GCS) score less than or equal to 8 should be intubated to avoid aspiration. We conducted a systematic review to establish if patients with GCS 64 8 for trauma or non-traumatic emergencies and treated in the acute care setting (e.g., Emergency Department or Pre-hospital environment) should be intubated to avoid aspiration or aspiration pneumonia/pneumonitis, and consequently, reduce mortality. Methods: We searched six databases, Pubmed, Embase, Scopus, SpringerLink, Cochrane Library, and Ovid Emcare, from April 15th to October 14th, 2020, for studies involving low GCS score patients of whom the risk of aspiration and related complications was assessed. Results: Thirteen studies were included in the final analysis (7 on non-traumatic population, 4 on trauma population, 1 pediatric and 1 adult mixed case studies). For the non-traumatic cases, two prospective studies and one retrospective study found no difference in aspiration risk between intubated and non-intubated patients. Two retrospective studies reported a reduction in the risk of aspiration in the intubated patient group. For traumatic cases, the study that considered the risk of aspiration did not show any differences between the two groups. A study on adult mixed cases found no difference in the incidence of aspiration among intubated and non-intubated patients. A study on pediatric patients found increased mortality for intubated versus non-intubated non-traumatic patients with a low GCS score. Conclusion: Whether intubation results in a reduction in the incidence of aspiration events and whether these are more frequent in patients with low GCS scores are not yet established. The paucity of evidence on this topic makes clinical trials justifiable and necessary. Trial registration: Prospero registration number: CRD42020136987

    Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity.

    Get PDF
    Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway

    Assignment of the binding site for Haptoglobin on Apolipoprotein A-I

    Get PDF
    Haptoglobin (Hpt) was previously found binding the high-density lipoprotein (HDL) Apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme Lecithin:Cholesterol Acyl-Transferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed for detecting the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydroxylamine and the resulting fragments, separated by electrophoresis or gel filtration, were tested by Western blotting or ELISA for their ability to bind Hpt. The ApoA-I sequence from Glu113 to Asn184 harbored the binding site for Hpt. Biotinylated peptides were synthesized overlapping such a sequence, and their Hpt binding activity was determined by avidin-linked peroxidase. The highest activity was exhibited by the peptide P2a, containing the ApoA-I sequence from Leu141 to Ala164. Such a sequence contains an ApoA-I domain required for binding cells, promoting cholesterol efflux, and stimulating LCAT. The peptide P2a effectively prevented both binding of Hpt to HDL-coated plastic wells and Hpt-dependent inhibition of LCAT, measured by anti-Hpt antibodies and cholesterol esterification activity respectively. The enzyme activity was not influenced, in the absence of Hpt, by P2a. Differently from ApoA-I or HDL, the peptide did not compete with Hemoglobin for Hpt binding in ELISA experiments. The results suggest that Hpt might mask the ApoA-I domain required for LCAT stimulation, thus impairing the HDL function. Synthetic peptides, able to displace Hpt from ApoA-I without altering its property of binding Hemoglobin, might be used for treatment of diseases associated with defective LCAT function

    A Chemical Strategy for the Preparation of Multimodified Peptide Imaging Probes

    Get PDF
    Multimodality probes appear of great interest for innovative imaging applications in disease diagnosis. Herein, we present a chemical strategy enabling site-specific doublemodification and cyclization of a peptide probe exploiting native chemical ligation (NCL) and thiol-maleimide addition. The synthetic strategy is straightforward and of general applicability for the development of double-labeled peptide multimodality probes

    Selectively charged and zwitterionic analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14

    Get PDF
    Zwitterionic polysaccharides (ZPs) have been shown in recent years to display peculiar immunological properties, thus attracting the interest of the carbohydrate research community. To fully elucidate the mechanisms underlying these properties and exploit the potential of this kind of structures, in depth studies are still required. In this context, the preparation of two cationic, an anionic, as well as two zwitterionic tetrasaccharide analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14 (SP14) capsular polysaccharide are presented. By exploiting a block strategy, the negative charge has been installed on the non-reducing end of the lactose unit of the tetrasaccharide and the positive charge either on the non-reducing end of the lactosamine moiety or on an external linker. These structures have then been tested by competitive ELISA, showing that the structural variations we made do not modify the affinity of the neutral compound to binding to a specific antibody. However, lower efficacies than the natural SP14 compound were observed. The results obtained, although promising, point to the need to further elongate the polysaccharide structure, which is likely too short to cover the entire epitopes

    Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice

    Get PDF
    The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo.Swati Dawar, Nur Hezrin Shahrin, Nikolina Sladojevic, Richard J D, Andrea, Loretta Dorstyn, Devendra K Hiwase and Sharad Kuma

    Evidence of a kallikrein inhibitor in human kidney. A new ring of the kallikrein-renin-angiotensin-aldosterone chain

    Get PDF
    By means of immunohistochemical reactions, the authors proved the inhibitor II-related immunoreactivity in distal convoluted tubules of human kidney. A sharp inhibitor II-related immunoreactivity was also present in the blood vessels' wall. On the contrary, in the wall of proximal tubules and glomeruli only low reactivity was found. The demonstration of an inhibitor II-related immunoreactivity in the distal convoluted tubules and vessels of human kidney represents a strong evidence that an inhibitor of kallikrein exists and acts also in humans as an important key in the kallikrein-renin-angiotensin aldosterone chain and hitherto confirms the experimental data of the literature. The proved inhibitor in the human kidney may intervene in the modulation of the kallikrein-kinin system and thus represents a key role in the intrarenal mechanisms related to the blood flow and arterial pressure regulation

    Computational models for the simulation of the elastic and fracture properties of highly porous 3D-printed hydroxyapatite scaffolds

    Get PDF
    Bone scaffolding is a promising approach for the treatment of critical-size bone defects. Hydroxyapatite can be used to produce highly porous scaffolds as it mimics the mineralized part of bone tissue, but its intrinsic brittleness limits its usage. Among 3D printing techniques, vat photopolymerization allows for the best printing resolution for ceramic materials. In this study, we implemented a Computed micro-Tomography based Finite Element Model of a hydroxyapatite porous scaffold fabricated by vat photopolymerization. We used the model in order to predict the elastic and fracture properties of the scaffold. From the stress–strain diagram of a simulated compression test, we computed the stiffness and the strength of the scaffolds. We found that three morphometric features substantially affect the crack pattern. In particular, the crack propagation is not only dependent on the trabecular thickness but also depends on the slenderness and orientation of the trabeculae with respect to the load. The results found in this study can be used for the design of ceramic scaffolds with heterogeneous pore distribution in order to tailor and predict the compressive strength
    • …
    corecore