1,768 research outputs found
Giant reflection band and anomalous negative transmission in a resonant dielectric grating slab: application to a planar cavity
The fundamental optical effects that are at basis of giant reflection band
and anomalous negative transmission in a self-sustained rectangular dielectric
grating slab in P polarization and for incidence angle not very far from the
Brewster's angle of the equivalent slab, are investigated. Notice, that the
self sustained dielectric grating slab is the simplest system that, due to the
Bragg diffraction, can show both the former optical effects. A systematic study
of its optical response is performed by an analytical exact solution of the
Maxwell equations for a general incidence geometry. At variance of the well
known broad reflection bands in high contrast dielectric grating slab in the
sub-wavelength regime, obtained by the destructive interference between the
travelling fundamental wave and the first diffracted wave (a generalization of
the so called second kind Wood's anomalies), the giant reflection band is a
subtle effect due to the interplay, as well as among the travelling fundamental
wave and the first quasi-guided diffracted one, also among the higher in-plane
wave- vector components of the evanescent/divergent waves. To better describe
this effect we will compare the optical response of the self-sustained high
contrast dielectric grating slab with a system composed by an equivalent
homogeneous slab with a thin rectangular high contrast dielectric grating
engraved in one of the two surfaces, usually taken as a prototype for the
second kind Wood's anomalies generation. Finally, the electromagnetic field
confinement in a patterned planar cavity, where the mirrors are two
self-sustained rectangular dielectric grating slabs, is briefly discussed.Comment: 14 pages, 12 figures, submitted to Phys. Rev.
Assignment of the binding site for Haptoglobin on Apolipoprotein A-I
Haptoglobin (Hpt) was previously found binding the high-density lipoprotein (HDL) Apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme Lecithin:Cholesterol Acyl-Transferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed for detecting the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydroxylamine and the resulting fragments, separated by electrophoresis or gel filtration, were tested by Western blotting or ELISA for their ability to bind Hpt. The ApoA-I sequence from Glu113 to Asn184 harbored the binding site for Hpt. Biotinylated peptides were synthesized overlapping such a sequence, and their Hpt binding activity was determined by avidin-linked peroxidase. The highest activity was exhibited by the peptide P2a, containing the ApoA-I sequence from Leu141 to Ala164. Such a sequence contains an ApoA-I domain required for binding cells, promoting cholesterol efflux, and stimulating LCAT. The peptide P2a effectively prevented both binding of Hpt to HDL-coated plastic wells and Hpt-dependent inhibition of LCAT, measured by anti-Hpt antibodies and cholesterol esterification activity respectively. The enzyme activity was not influenced, in the absence of Hpt, by P2a. Differently from ApoA-I or HDL, the peptide did not compete with Hemoglobin for Hpt binding in ELISA experiments. The results suggest that Hpt might mask the ApoA-I domain required for LCAT stimulation, thus impairing the HDL function. Synthetic peptides, able to displace Hpt from ApoA-I without altering its property of binding Hemoglobin, might be used for treatment of diseases associated with defective LCAT function
Particle Physics from Almost Commutative Spacetimes
Our aim in this review article is to present the applications of Connes'
noncommutative geometry to elementary particle physics. Whereas the existing
literature is mostly focused on a mathematical audience, in this article we
introduce the ideas and concepts from noncommutative geometry using physicists'
terminology, gearing towards the predictions that can be derived from the
noncommutative description. Focusing on a light package of noncommutative
geometry (so-called 'almost commutative manifolds'), we shall introduce in
steps: electrodynamics, the electroweak model, culminating in the full Standard
Model. We hope that our approach helps in understanding the role noncommutative
geometry could play in describing particle physics models, eventually unifying
them with Einstein's (geometrical) theory of gravity.Comment: 104 pages, 5 figures, version 2 (minor changes and some additional
references
Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice
The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo.Swati Dawar, Nur Hezrin Shahrin, Nikolina Sladojevic, Richard J D, Andrea, Loretta Dorstyn, Devendra K Hiwase and Sharad Kuma
Comparison of relativity theories with observer-independent scales of both velocity and length/mass
We consider the two most studied proposals of relativity theories with
observer-independent scales of both velocity and length/mass: the one discussed
by Amelino-Camelia as illustrative example for the original proposal
(gr-qc/0012051) of theories with two relativistic invariants, and an
alternative more recently proposed by Magueijo and Smolin (hep-th/0112090). We
show that these two relativistic theories are much more closely connected than
it would appear on the basis of a naive analysis of their original
formulations. In particular, in spite of adopting a rather different formal
description of the deformed boost generators, they end up assigning the same
dependence of momentum on rapidity, which can be described as the core feature
of these relativistic theories. We show that this observation can be used to
clarify the concepts of particle mass, particle velocity, and
energy-momentum-conservation rules in these theories with two relativistic
invariants.Comment: 21 pages, LaTex. v2: Andrea Procaccini (contributing some results
from hia Laurea thesis) is added to the list of authors and the paper
provides further elements of comparison between DSR1 and DSR2, including the
observation that both lead to the same formula for the dependence of momentum
on rapidit
Signaling via interleukin-4, receptor alpha chain is required for successful vaccination against schistosomiasis in BALB/c mice
Radiation-attenuated (RA) schistosome larvae are potent stimulators of innate immune responses at the skin site of exposure (pinna) that are likely to be important factors in the development of Th1-mediated protective immunity. In addition to causing an influx of neutrophils, macrophages, and dendritic cells (DCs) into the dermis, RA larvae induced a cascade of chemokine and cytokine secretion following in vitro culture of pinna biopsy samples. While macrophage inflammatory protein 1 and interleukin-1 (IL-1) were produced transiently within the first few days, the Th1-promoting cytokines IL-12 and IL-18 were secreted at high levels until at least day 14. Assay of C3H/HeJ mice confirmed that IL-12 secretion was not due to lipopolysaccharide contaminants binding Toll-like receptor 4. Significantly, IL-12 p40 secretion was sustained in pinnae from vaccinated mice but not in those from nonprotected infected mice. In contrast, IL-10 was produced from both vaccinated and infected mice. This cytokine regulates IL-12-associated dermal inflammation, since in vaccinated IL-10/ mice, pinna thickness was greatly increased concurrent with elevated levels of IL-12 p40. A significant number of IL-12 p40 cells were detected as emigrants from in vitro-cultured pinnae, and most were within a population of rare large granular cells that were Ia, consistent with their being antigen-presenting cells. Labeling of IL-12 cells for CD11c, CD205, CD8, CD11b, and F4/80 indicated that the majority were myeloid DCs, although a proportion were CD11c F4/80, suggesting that macrophages were an additional source of IL-12 in the skin
Doubly Special Relativity and de Sitter space
In this paper we recall the construction of Doubly Special Relativity (DSR)
as a theory with energy-momentum space being the four dimensional de Sitter
space. Then the bases of the DSR theory can be understood as different
coordinate systems on this space. We investigate the emerging geometrical
picture of Doubly Special Relativity by presenting the basis independent
features of DSR that include the non-commutative structure of space-time and
the phase space algebra. Next we investigate the relation between our geometric
formulation and the one based on quantum -deformations of the
Poincar\'e algebra. Finally we re-derive the five-dimensional differential
calculus using the geometric method, and use it to write down the deformed
Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
- …
