6,743 research outputs found
Computer program for calculation of oxygen uptake
A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators
Body water compartments during bed rest: Evaluation of analytical methods
Nine healthy young men were studied to determine the reproducibility and interchangeability of the use of radio-iodinated human serum albumin and Evans Blue dye for estimating plasma volume, sodium bromide for extracellular fluid volume, and deuterium oxide for total body water volume. All subjects were tested in a semibasal condition and allowed to rest for at least 30 min. after arriving at the laboratory. The results indicate that there was uniform distribution of I131 and Evans Blue dye 10 min. after injection and of NaBr and D2O 3 hours after oral ingestion; the buildup of residual tracer did not interfere appreciably with the measurement of either or Evans Blue spaces when they are administered at equal intervals, and the buildup of background tracer after ingestion of NaBr and D2O once per week for three consecutive weeks did not affect the accuracy of the measurement. It was found that I131 and Evans Blue may be used interchangeably for estimating plasma volume; for estimating bromide and D2O spaces, one 3-hour equilibrium blood sample gives results similar to the extrapolation of multiple samples
Parallel Deterministic and Stochastic Global Minimization of Functions with Very Many Minima
The optimization of three problems with high dimensionality and many local minima are investigated
under five different optimization algorithms: DIRECT, simulated annealing, Spall’s SPSA algorithm, the KNITRO
package, and QNSTOP, a new algorithm developed at Indiana University
How To Pick The Best Regression Equation: A Review And Comparison Of Model Selection Algorithms
This paper reviews and compares twenty-one different model selection algorithms (MSAs) representing a diversity of approaches, including (i) information criteria such as AIC and SIC; (ii) selection of a “portfolio” or best subset of models; (iii) general-to-specific algorithms, (iv) forward-stepwise regression approaches; (v) Bayesian Model Averaging; and (vi) inclusion of all variables. We use coefficient unconditional mean-squared error (UMSE) as the basis for our measure of MSA performance. Our main goal is to identify the factors that determine MSA performance. Towards this end, we conduct Monte Carlo experiments across a variety of data environments. Our experiments show that MSAs differ substantially with respect to their performance on relevant and irrelevant variables. We relate this to their associated penalty functions, and a bias-variance tradeoff in coefficient estimates. It follows that no MSA will dominate under all conditions. However, when we restrict our analysis to conditions where automatic variable selection is likely to be of greatest value, we find that two general-to-specific MSAs, Autometrics, do as well or better than all others in over 90% of the experiments.Model selection algorithms; Information Criteria; General-to-Specific modeling; Bayesian Model Averaging; Portfolio Models; AIC; SIC; AICc; SICc; Monte Carlo Analysis; Autometrics
Post-polymerisation modification of bio-derived unsaturated polyester resins via Michael additions of 1,3-dicarbonyls
Post-polymerisation modification of α,β-unsaturated polyesters (UPEs) is useful to deliver polymers with tuneable properties and applications different from their parent backbone. Bio-derivable itaconate unsaturated polyesters, with a range of co-monomers, were modified via a heterogeneously catalysed microwave-assisted Michael addition of pendants, acetylacetone (Hacac) and dimethyl malonate (DMM), to the polymer backbones with very short reaction times. Differential scanning calorimetry analysis showed an increase in the glass-transition temperatures of most of the saturated polyesters considered. Solubility and complexation studies demonstrated metal chelating abilities of the acetylacetone pendant can be retained, even following tethering to a polyester backbone. Additionally, it is demonstrated for the first time that Michael addition with Hacac and DMM can be used to reverse Ordelt saturation, an unwanted side-reaction in the synthesis of UPEs
Development of a quality assurance process for the SoLid experiment
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK circle CEN, in Belgium.
The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with (LiF)-Li-6:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around O(10)% in the energy spectrum of reactor (v) over bare. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed. CALIPSO provides precise, automatic placement of radioactive sources in front of each cube of a given detector plane (16 x 16 cubes). A combination of Na-22, Cf-252 and AmBe gamma and neutron sources were used by CALIPSO during the quality assurance process. Initially, the scanning identified defective components allowing for repair during initial construction of the SoLid detector. Secondly, a full analysis of the calibration data revealed initial estimations for the light yield of over 60 PA/MeV and neutron reconstruction efficiency of 68%, validating the SoLid physics requirements
- …
