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WORKING PAPER No. 13/2009 
 

How To Pick The Best Regression Equation: A Review And 
Comparison Of Model Selection Algorithms 

 
 
I.  INTRODUCTION 
 
In many empirical applications, researchers face a choice of which variables to include in 

a regression model.  Without some objective algorithm, non-systematic efforts may, at 

best, innocently miss superior specifications; or, at worst, strategically select results to 

support the researcher’s preconceived biases.  A substantial literature demonstrates that 

model selection matters.  For example, many studies of economic growth find that results 

that are economically and statistically significant in one study are not robust to alternative 

specifications (cf. Levine and Renelt, 1992; Fernandez et al., 2001; Sala-i-Martin et al., 

2004; Hoover and Perez; 2004; Hendry and Krolzig 2004).  For these and related reasons, 

there is interest in automated model selection algorithms (MSAs) that can point 

researchers to the “best” model specification (Oxley, 1995; Phillips, 2005). 

 This study reviews and compares a large number of MSAs.  In so doing, it 

addresses Owen’s (2003, p. 622) call for evidence on the head-to-head performance of 

rival model selection methods.  Our target audience is practitioners interested in using 

MSAs in their own research who seek guidance about which MSA(s) they should 

employ.  The goal of this review is to identify factors which explain why MSAs succeed 

or fail in given data environments.  While we make some tentative MSA 

recommendations, these are primarily meant to be suggestive, with the hope that they will 

stimulate further research on this subject.   
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 As the list of all possible MSAs is uncountably large, we are forced to restrict 

ourselves to a subset of these.  Even so, our comparison is extensive, consisting of 

twenty-one MSAs representing a number of different approaches to the model selection 

problem, including: (i) choosing a single best model based upon an information criterion 

(IC) such as the Akaike Information Criterion or the Schwarz Information Criterion 

(McQuarrie and Tsai, 1998); (ii) selection of a “portfolio” or best subset of models 

(Poskitt and Tremayne, 1985); (iii) general-to-specific algorithms such as the Autometrics 

package in PcGive (see Doornik, 2009a, for the former and Doornik and Hendry, 2007, 

for the latter); (iv) forward-stepwise regression approaches (see, e.g., Whittingham, 

Stephens, Bradbury, and Freckleton, 2006, and Doornik, 2008), (v) combination of 

models using Bayesian Model Averaging (Hoeting et al., 1999; Sala-i-Martin, 2004); and 

(vi) inclusion of all variables.   

 The literature on MSAs consists not only of a large number of alternative 

procedures, but also a variety of measures to determine “best” MSA performance.  A 

non-exhaustive list of performance measures includes counts of the number of times the 

MSA “overfits” (selects too many variables), “underfits” (selects too few variables), or 

correctly picks the true DGP (cf. McQuarrie and Tsai, 1999); and predictive efficiency 

(Kuha, 2004; Burnham and Anderson, 2004). 

 The measure of estimator performance employed in this review is the 

unconditional mean-squared error (UMSE) of estimated coefficients.  This measure 

allows us to conceptually decompose the performance of the respective MSAs into bias 

and variance components.  Our review will show that this decomposition provides a 

useful framework for understanding MSA performance.       
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 Our review will also show that an MSA’s “effective penalty function” – that is, 

the “cost” the respective MSA attaches to the selection of an additional variable – is a key 

MSA attribute.  Penalty functions are unique to IC MSAs.  However, the “effective 

penalty function” can be measured by an MSA’s null rejection frequency (denoted 

“gauge” by Castle, Doornik and Hendry, 2008).  This attribute of MSAs plays an 

important role in determining whether a given MSA is likely to succeed or fail in 

particular data environments.   

 Not surprisingly, we find that no single MSA performs best in all data 

environments.  However, our results are able to identify a set of MSAs that perform best 

in data environments that are likely to be of particular interest to practitioners.  We 

characterize these data environments by two conditions.  The first occurs when the 

researcher believes, on the basis of a priori judgment, that there are many more candidate 

than “relevant” variables, making it difficult to decide which ones to include.  The second 

occurs when there is a substantial degree of DGP noise, so that many variables are on the 

edge of statistical significance.  Under these conditions, we find that Autometrics 

performs as well or better than all other MSAs in over 90% of experiments.  

 
II.  A FRAMEWORK FOR COMPARING MODEL SELECTION ALGORITHMS 
 
The Problem.  Our analysis focuses on the following problem.  We have a data set 

consisting of N observations on variables Y, X1, X2, … , XL.  We assume that the data 

generating process (DGP) producing these observations is given by:  

(1) nLnL2n21n1n εXβXβXβY   , N1,2,...,n  , 
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where K of the  ’s are nonzero and L-K are zero, LK1  ; and the  are i.i.d., with nε

 2
n σ0,N~ε .  We want to choose the “best” MSA, where “best” is defined as the MSA 

that results in the most accurate estimates of the  ’s.  We define this more precisely 

below. 

 The Model Selection Algorithms (MSAs).  We study twenty-one different MSAs.  

These are listed in TABLE 1, along with a brief description.  The first four are based on 

information criteria (IC).  While there are many information criteria, most of these are 

asymptotically related to either the Akaike Information Criterion (AIC) or the Schwarz 

Information Criterion (SIC) (Weakliem, 2004).  Both the AIC and the SIC have the same 

general form: + Penalty, where   is the maximized value of the log-likelihood 

function for the given specification, and Penalty is a function that monotonically 

increases in the number of coefficients to be estimated.  In both cases, smaller is better, 

and the specification with the smallest AIC/SIC value is considered to be “best.”  The SIC 

generally penalizes the inclusion of parameters more harshly than the AIC, and thus 

favors more parsimonious models.   

2

 The AIC and SIC have asymptotic justification.  The SIC is consistent.  That is, if 

the true DGP is included among the set of candidate models, the SIC will select the true 

DGP with probability approaching one as the sample size increases.  The AIC is 

asymptotically efficient but not consistent (see Hannan and Quinn, 1979) as it assumes 

that the true DGP is not included in the set of candidate models.  It selects the model 

having the smallest expected prediction error with probability approaching one as the 

sample size increases (Kuha, 2004). 
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 It is well-known that both the AIC and SIC tend to “overfit” (i.e., include more 

variables than the DGP) in small samples.  As a result, small-sample corrections for these 

have been developed by Hurvich and Tsai (1989) and McQuarrie (1999), respectively.  

These are denoted in TABLE 1 as AICC and SICC, where the last “C” denotes that it is 

the “corrected” version of the respective information criterion.   

 In the context of our analysis, the procedure for identifying the “best” coefficient 

estimates for these MSAs is as follows:  IC values are calculated for all 2L possible 

models.1  Coefficient estimates are taken from the model with the lowest IC value.  If a 

variable does not appear in that model, then the associated estimate of that coefficient is 

set equal to zero.  

 The next eight MSAs are based on the idea of selecting – not a single “best” 

model – but a “portfolio” of models that are all “close” as measured by their information 

criterion (IC) values.  Poskitt and Tremayne (1987) derive a measure based on the 

posterior odds ratio,  



  mminm ICIC

2

1
exp  , where ICmin  is the minimum IC value  

among all 2L models, and ICm is the value of the respective IC in model m, m=1,2,…,2L.  

They suggest forming a portfolio of models all having 10m  .  Alternatively, 

Burnham and Anderson (2004) suggest a threshold m  value of 2.   Our study considers 

both values.  The MSAs AIC < 2, AICC < 2, SIC < 2, and SICC < 2 each construct 

portfolios of models that have AIC, AICC, SIC, and SICC values that lie within 2 of the 

minimum value model.  The next four MSAs (AIC < 10 , AICC < 10 , SIC < 10 , 

                                                 
1 The intercept, γ, is fixed to enter all models. 
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and SICC < 10 ) do the same for models lying within 10  of the respective minimum 

value model.   

 The procedure for identifying “best” coefficient estimates for these MSAs is:  

Coefficient estimates are set equal to zero for variables that never appear in the portfolio.  

For variables that appear at least once in the portfolio of models, the respective 

coefficient estimates are calculated as the arithmetic average of all nonzero coefficient 

estimates.   

 The next three MSAs use an automated general-to-specific (AUTO) regression 

algorithm.  These are taken from the Autometrics program available in PcGive 12 (see 

Doornik, 2009).  Autometrics undertakes a multi-path tree search, commencing from the 

general model with all potential variables, and eliminates insignificant variables while 

ensuring a set of pre-specified diagnostic tests are satisfied in the reduction procedure, 

checking the subsequent reductions with encompassing tests.2  While the Autometrics 

program allows researchers the freedom to set their preferred significance level, our 

analyses focus on 1% and 5% (AUTO_1% and AUTO_5%), as these are most common in 

the applied economics literature; and on 0%10
N

61
0.9


.
 (AUTO_Variable) to adjust the 

significance level for large sample sizes (see Hendry, 1995, p.490).3    

 Next are three forward-stepwise (FW) algorithms.  The particular versions that we 

employ also come from PcGive 12 and use the same three significance levels as the 

preceding AUTO algorithms (FW_1%, FW_5%, and FW_Variable).  Variables are added 

                                                 
2 For the results reported in this paper, Autometrics bias corrects the coefficient estimates of the retained 
variables for the bias induced by model selection using a 2-step correction procedure, see Hendry and 
Krolzig (2005). 

3 5%0%10
0.9N

61


.
 when N=47, and 1%0%10

0.9N

61


.
 when N=281. 
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to the model in order of significance, one at a time, until no further significant regressors 

are found. If included variables become insignificant as others are added, they are 

removed from the model. Both the AUTO and FW algorithms produce a single-best 

model and assign a coefficient estimate of zero to those variables that are not retained in 

the final model. 

 The next two MSAs are examples of Bayesian Model Averaging (Hoeting, 

Madigan, Raftery, and Volinsky, 1999).  In Bayesian Model Averaging, a composite 

model is constructed by taking a weighted average of a set of models, which might 

consist of all possible models, with weights consisting of the posterior model 

probabilities.  In the composite model, each of the variable coefficients equals the 

weighted average of the individual estimated coefficients for that variable.  The model 

weights employ the maximized value of the corresponding log-likelihood functions.  The 

two versions we analyze are: (i) LLWeighted_All, which uses the full set of 2L models to 

construct weighted average coefficient estimates; and (ii) LLWeighted_Selected, which 

restricts itself to the set of all 2L-1 models where the given variable is included in the 

model. 

 The final MSA (ALLVARS) selects the full set of potential variables for inclusion 

in the “final model.”  As should be apparent, the great disparity in approaches underlying 

these MSAs makes it difficult to analytically compare the performance of all twenty-one 

MSAs, and this is all the more true with respect to their performance in finite samples.  

Hence our analysis turns to Monte Carlo experiments. 

  Monte Carlo Experiments and the Performance Measure.  Our experiments all 

use the DGP, nLnL2n21n1n εXβXβXβY   , N1,2,...,n  , where 5 , 
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1βββ K21   , 0βββ L2K1K    , LK1  .  The Xk’s are i.i.d. and 

standard normally distributed.  They are fixed both within and across experiments. We 

abstract from correlated data in this set of experiments but we do not correct the fixed 

regressors for sample correlations.  The ε ’s are i.i.d. and normally distributed with mean 

0 and standard deviation, .   is fixed within an experiment but variable across 

experiments – as will shortly be described.

2σ 2σ

4  Each experiment has K “relevant” variables 

and L-K “irrelevant” variables, with relevancy defined according to whether that variable 

has a nonzero coefficient in the DGP.    

 We use unconditional mean-squared error (UMSE) of the coefficient estimates to 

compare the performances of the preceding MSAs.5  Each experiment consists of 1000 

simulated data sets/replications r.  For each of these, and for each MSA, we produce a set 

of estimates,  MSA
rL,

MSA β,..., ˆ

 

r2,
MSA
r1, β,β ˆˆ .6  These are used to calculate experiment-, MSA-, and 

coefficient-specific UMSE values as follows: 

(2) 
1000

ββ
2

k
MSA

rk, ˆ

 UMSE

1000

rMSA
k




                                                

, k = 1,2, …, L. 1

Because UMSE is not generally comparable across coefficients, we assign a coefficient-

specific ranking from 1 to 21,  with the MSA producing the lowest UMSE for that 

coefficient receiving a rank of 1, the MSA with the next smallest UMSE receiving a rank 

of 2, and so on.   These rankings are then averaged across all L coefficients to produce an 

 

nε

4 The AUTO and FW MSAs were run using a different random number generator (available in Ox, see 

Doornik, 2007) so the draws of  will differ between the 6 AUTO and FW MSAs and the 15 others. The 

fixed regressors, Xk, are identical across all MSAs and experiments. The effect of different random number 
generators is minimal across 1000 replications.  
5 Earlier analyses also compared MSA performance based on mean absolute deviations.  We found little 
difference between these two performance measures and thus only report the UMSE results. 
6 The intercept is omitted in the calculations as it is imposed in the selected model for all MSAs. 
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overall MSA ranking for that experiment.  For example, if L = 5 and a given MSA has 

individual coefficient rankings  1013121010 ,,,, , this MSA would receive an average 

rank of 11 for that experiment.7 

 There are several advantages to using UMSE as a measure of MSA performance.  

First, it coincides with a key goal of estimation: that of producing accurate coefficient 

estimates.  Other performance measures, such as predictive efficiency, may accept biased 

estimates of individual coefficients as long as accurate predictions are produced.8  

However, in many applications, such as policy analysis, the sizes of the individual 

coefficients are the object of measurement.   

 With respect to coefficient mean-squared error, there is some question whether 

one should focus on (i) both relevant and irrelevant variables, or (ii) just the set of 

relevant variables.  Alternatively, one could focus on just the set of included variables 

(the conditional mean-squared error) as this is the observed model in any empirical 

application.  The choice among these alternative performance measures comes down to 

the researcher’s loss function.  In this study, we assume the researcher attaches equal loss 

to misestimating (i) relevant and (ii) irrelevant variables; and (i) included and (ii) 

excluded variables.   

 To put this back into a policy analysis framework, our study assumes that there is 

equal loss to falsely attributing a policy impact to an irrelevant variable and falsely 

                                                 
7 Ties were handled as follows.  Let the MSAs be ranked in ascending order, MSA1, MSA2, … ,MSAj, 
MSAj+1, …, MSAj+m, …, MSA21; and suppose MSAj+1 to MSAj+m are tied.  Each of these receive rank 

  mij
m

1i



 . 

8 The difference between these two measures can be considerable when there is substantial 
multicollinearity.  When this occurs, omitted variable bias may cause coefficients to differ substantially 
from their population values with little cost in predictive accuracy. 
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concluding there is no policy impact for a relevant variable.9  Policy-makers may well 

attach different weights to retaining/omitting relevant and irrelevant variables.  However, 

many of our qualitative results will still be valid as long as positive loss is attached to 

misestimating both relevant and irrelevant variables. 

 Another reason for using UMSE is that it can be decomposed into (i) bias and (ii) 

variance components.  Some of the MSAs are weak on one but strong on the other, so 

that their relative performance depends on tradeoffs between these two components.  As 

we demonstrate, this provides insights about the conditions under which particular MSAs 

are likely to be effective.  

 Factors Affecting the Relative Performance of MSAs.  In order to gain a better 

understanding of the determinants of MSA performance, we study four factors: (i) K, the 

number of relevant variables in the DGP (holding L constant); (ii) N, the total number of 

observations; (iii) L, the total number of variables available for selection in a given 

experiment; and (iv)  , the “non-centrality parameter,” which provides a measure of 

DGP noise.10  Each of these is briefly explained below. 

 We expect that MSA performance will systematically vary with K.  Specifically, 

we expect that MSAs that tend to underfit (overfit) will perform relatively well when 

there are few (many) relevant variables in the DGP.  To investigate this for given L, we 

run L consecutive experiments where K starts at 1 and progresses through L.  As 

discussed below, the variance of the error term, , is adjusted as K increases to hold 

constant the expected value of the t-statistics for the relevant variables. 

2

                                                 
9 One could also divide relevant variables into “policy” and “control” variables, where the researcher is 
only concerned about accurate estimation of the coefficients for “policy” variables.  Seen from this 
perspective, our experiments implicitly assume that all relevant variables are “policy” variables. 
10 See McQuarrie and Tsai (1998) for the importance of “signal-to-noise” ratio as a determinant of MSA 
performance for IC algorithms.    
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 We also expect that MSA performance will systematically vary with N since some 

of the MSAs have established asymptotic properties.  Specifically, SIC, SICC, and 

Autometrics all select the true DGP with probability 1 in the limit as sample size 

increases.  This should translate into desirable UMSE performance for sufficiently large 

N.  Accordingly, we set N = 75, 150, 500, and 1500. 

 As robustness checks, we also vary the total number of candidate variables, L, and 

the amount of noise disguising the true DGP.  L is set equal to 5, 10, and 15.  While 

larger values would be desirable, we are limited by computational constraints since many 

of the MSAs require estimation of all possible 2L models. This equates to 32,768 possible 

models when L=15, and demonstrates the infeasibility of many MSAs when L is large.11  

 For our measure of DGP noise we considered using model R2 values.  This, 

however, has an undesirable consequence.  Given our experimental design, an increase in 

K causes model R2 to increase when  is held constant.  If we compensate by increasing 

 to hold R2 constant, we will lower the average sample t-statistic for relevant 

variables; or to state it differently, we will lower the retention rates associated with 

significance-driven variable selection.  Instead, we use the “non-centrality 

parameter”, , as our measure of DGP noise.   

2

2

 tEψ 

 A t-test of  is given by 0β:H k0 
kβ

k
k σ

β
t

ˆ

ˆ
 .  If the Xk’s are i.i.d., then 

2
X

2
2

β
k

k Nσ

σ
σ ˆ .  It follows that 

2
X

2

k
kψ

k
Nσσ

β
 1β 

                                                

.  In our experimental design,  and k

 
11 This confers a computational advantage for those MSAs that don’t require estimation of all possible 
models.  For example, Autometrics can handle more variables than observations so L is not constrained, 
even by N (see Doornik, 2009b).   
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1σ 2
X k
 .  Thus, the variance of the error term in the DGP can be adjusted to produce 

target values of ψ according to the relationship, 

(3) 2
2

ψ

N
σ . 

ψ has the attractive property that it is independent of K and L for a given sample size.  As 

a result, a given value of ψ represents the expected value of the sample t-statistic for any 

of the relevant variables – no matter the model specification.12 

 In summary, our experimental framework is designed to compare MSA 

performance across a wide variety of simulated data environments.  We produce a total of 

360 experiments spanning a wide range of values for K, L, N, and ψ (cf. TABLE A2 in 

the Appendix).   

 
III.  RESULTS 
 
Overall Performance of MSAs.  TABLE 2 summarizes our overall findings.  The first 

two columns report mean and median rankings for all 360 experiments.  The next two 

columns report minimum and maximum rankings.  A smaller rank indicates better 

performance, with 1 being best.  The individual unit of observation is the experiment.   

 For example, the mean ranking for SIC over all 360 experiments is 10.6.  The best 

ranking achieved by this MSA in any one experiment is 4.7 (for the experiment K=3, 

L=10, N=1500, and ψ=6).  This number is itself an average rank over the 10 coefficients 

                                                 
12 The power to reject the null hypothesis 0β:H k0   can be calculated as a function of ψ and α by 

, where  is the critical value for a given significance level, α. 

The associated retention rates are largely independent of N, except to the extent that N affects the critical 
value, .  TABLE A1 records powers for a single t-test for different values of ψ  and α when N=75.  For 

example, there is a 16% probability of retaining a variable with a non-centrality of 1 using a significance 
level of α=5%, which increases to 50% for ψ=2 and 100% for ψ=6.  This provides a benchmark against 
which to compare each MSA’s performance.    

    0αα H|ψcψtPψtE|ctP 

αc

 αc
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in that experiment.  The worst ranking achieved by this MSA is 18.1 (for the experiment 

K=10, L=10, N=1500, and ψ=2).  TABLE 2 ranks the 21 MSAs in descending order, 

with the best MSA (as measured by mean rank) listed first.   

 In terms of overall performance, the top three MSAs, as measured by both mean 

and median rankings, are the three Autometrics MSAs.  The best of the three, AUTO_5%, 

has an average ranking a full rank better than its next best, non-Autometrics competitor.   

 Moving further down the table, we see that portfolio MSAs sometimes perform 

better than their non-portfolio analogs (cf. AICC < 10  and AICC < 2 versus AICC) and 

sometimes worse (cf. SIC versus SIC < 10  and SIC < 2). We also find that model 

averaging over all possible models (LLWeighted_All) is generally superior to model 

averaging over only those models in which the respective variable appears 

(LLWeighted_Selected), even though the former produces biased coefficient estimates.  

That being said, there are data environments where LLWeighted_Selected does better.   

 The worst-performing MSA is ALLVARS.  Accordingly, we can conclude that it is 

not a good idea – as a general strategy – to include all potential variables in a regression 

specification.  

 The wide range of minimum and maximum values makes it very clear that no 

single MSA always performs best, or worst.  For example, consider ALLVARS.  While it 

generally performs poorly, it does better than any other MSA when all the candidate 

variables are relevant (K=L) because the estimated model is the DGP for this 

specification.13  

                                                 
13  The median ranking for ALLVARS over the 36 experiments where K=L is 1.20.  The next closest MSA 
has a median rank of 3.15. 
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 Care must be exercised in interpreting these rankings as they incorporate 

sampling error.  We can calculate standard error bands for the MSAs to assess whether 

the UMSEs are significantly different for each MSA. Formal statistical tests such as 

Diebold and Mariano (1995) quickly become infeasible as there are 3900 UMSEs per 

MSA in the set of experiments conducted. Instead, we compare the average UMSE for 

each MSA ( 



3900

1r

MSAMSA
r UMSEUMSE

3900

1
) against the average UMSE for all 21 MSAs 

( 
 


3900

1r

21

1j

MSA
r UMSEUMSE

81900

1 j ).  

 Generally UMSEs cannot be directly compared but we use a result by Rao (1952, 

p.214) that states that the variance of  UMSEln  is independent of UMSE, enabling 

comparisons across log UMSEs. We record 




 MSA
UMSEln  against  UMSEln  in 

FIGURE 1.14  Standard error bands can be computed around the mean using 

  M

2
σ 2

UMSEln
  asymptotically, where M  is the number of replications, so the standard 

error bands are given by 0890 .100022 

                                                

.  

 FIGURE 1 reports the results of testing for differences in the UMSEs of the 

respective MSAs.  It is apparent that most UMSEs are not statistically different from each 

other.  However, four MSAs lie outside the ±2σ bands: LLWeighted_All, AUTO_5%, 

 
14 More formally, the result by Rao states that if  ~ INiu  2, u  with an unbiased estimate of the sample 

variance given by  






M

1i

2
i

2 μx
1M

1
σ̂ , then  2ˆln uV  is independent of . Furthermore, the 

UMSE of the log variance is given by 

2
u

    22
uσ




M

1i

2
u lnσln ˆ2

u M

1
σ̂lnUMSE  which is 

M

2
 

asymptotically.  
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ALLVARS, and FW_1%.  In contrast, we would expect only one MSA to exceed the 

bands if the null that all methods are equally good were true.  

 It is noteworthy that there is relatively little correspondence between the 






 MSA
UMSEln  values in FIGURE 1 and the rankings in TABLE 2.  The explanation for 

this discrepancy lies in the distribution of UMSE values.  For example, FW_1% has a 

significantly higher  UMSEln  value than the other MSAs, and yet is ranked 4th in 

TABLE 2. Further investigation reveals that the distribution of UMSEs for FW_1% 

exhibits a bimodal distribution with a small mass at very large UMSEs when ψ is low and 

K is relatively large.15  This illustrates a shortcoming of using rankings to summarize 

UMSE performance, though given the noncomparability of UMSEs across experiments, 

we are left with little alternative.  Nevertheless, while the subsequent discussion focuses 

on rankings, we shall show that the key results also hold true when evaluated using 






 MSA
UMSEln  values. 

 A Bias-Variance Framework for Understanding Relative Performance of MSAs.  

As noted above, measures of overall performance mask substantial differences between 

MSAs across different data environments.  TABLE 3 illustrates the important role that K 

plays in determining MSA performance.  It compares rankings for two IC algorithms 

(AIC and SIC) as K changes, holding L, N, and ψ constant (here set equal to L=10, N=75, 

and ψ=2).  Columns (1) and (4) report the average rank (over the 10 coefficients) for 

each of the respective experiments (where each experiment consists of 1000 replications).  

                                                 
15 Leeb and Pötscher (2005) show that the post-selection distribution is highly bimodal for low non-
centralities, with many significant ‘wrong-signed’ estimates, which would adversely affect UMSE.  
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Columns (2/3) and (5/6) decompose these into average ranks over relevant and irrelevant 

variables.  

 When the number of relevant variables is relatively small, SIC outperforms AIC.  

As K increases, SIC monotonically loses ground to AIC.  When K=5, the relative 

rankings of the two MSAs switch positions, with AIC outperforming SIC.  Note that 

average performance within the sets of irrelevant and relevant variables is little affected 

by increases in K.   

 SIC outperforms AIC on irrelevant variables (cf. Columns 2 and 5).  AIC 

outperforms SIC on relevant variables (cf. Columns 3 and 6).  The switch in relative 

performance occurs because of changes in the weights of these two components.  When 

there are many irrelevant variables and few relevant variables, SIC’s advantage on the 

former causes its overall performance to dominate AIC.  As K increases, AIC’s advantage 

on relevant variables allows it to overtake SIC.   

 The explanation for SIC’s advantage (disadvantage) on irrelevant (relevant) 

variables must be due to the penalty function, since this is the only characteristic that 

distinguishes the two MSAs.   SIC has a larger penalty function than AIC and therefore 

selects, on average, fewer irrelevant variables.  Both SIC and AIC produce unbiased 

coefficient estimates for irrelevant variables.  However, SIC-selected models will have 

lower variance since omitted variables are assigned coefficient values of 0.  Of course, 

SIC also admits fewer relevant variables.  This biases coefficient estimates of the relevant 

variables since their population values are nonzero.  Therefore, SIC’s larger penalty 

function harms its performance with respect to relevant variables.  
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 In summary, a larger penalty function decreases the variance associated with 

irrelevant variables while also biasing coefficient estimates of relevant variables.  We 

conjecture that this tradeoff between variance and bias is a key component of the 

relationship between MSA performance and K.   

 While we cannot demonstrate this conjecture analytically, our experiments allow 

us to investigate it empirically.  The four IC MSAs can be strictly ordered in terms of 

increasing penalty functions: AIC < AICC < SIC < SICC.  The preceding analysis leads 

us to two predictions regarding MSA performance with respect to K: 

 
Prediction #1 (K fixed): If penalty functions are a key determinant of 
MSA performance, there should be a clear rank-order relationship 
between AIC/AICC/SIC/SICC for given K. 
   
 
Prediction #2 (K variable): If MSA with larger penalty functions are 
most advantaged (disadvantaged) with many irrelevant (relevant) 

variables, then 
ΔK

ΔRank
(holding L constant) should display a clear 

rank-order relationship between AIC/AICC/SIC/SICC. 
 
 
 FIGURE 3 reports the performance results for all 180 experiments where N=75 

(cf. TABLE A1).  The vertical axes report MSA rankings (from 1 to 21).  The horizontal 

axes are ordered by K (from 1 to L).  There are three columns of figures, corresponding to 

L = 5, 10, and 15; and six rows for ψ from 1 to 6 (with DGP noise greatest for smallest 

ψ).  The four boldfaced lines indicate the rankings for AIC/AICC/SIC/SICC, with the 

dotted lines becoming increasingly solid for IC with larger penalty functions.  The 

performances of the other seventeen MSAs are indicated by dotted, non-boldfaced lines. 

 Visual inspection confirms that the experimental results provide strong support in 

favor of both predictions.   141 of the 180 experiments (approximately 78%) represented 

 18



in FIGURE 3, are characterized by a clear rank order for AIC/AICC/SIC/SICC, with 

either  or .  The results are 

somewhat weaker, but still strong, for the additional 180 experiments that study N = 150, 

500, and 1500 (cf. FIGURE A1 in the Appendix).  Over all 360 experiments, 257 

(approximately 71%) satisfy Prediction #1.  Note that these results make no allowance 

for sampling error. 

SICCSICAICCAIC  SICCSICAICCAIC 

 A strong test of Prediction #2 is  (for K=1) and 

(for K=L).  13 of the 18 graphs in FIGURE 3 (approximately 

72%) satisfy this test.  When one includes the additional eighteen graphs from FIGURE 

A1, the overall success rate is 25 of 36 (approximately 69%).    

SICCSICAICCAIC 

SICCSICAICCAIC 

 These results are consistent with the penalty function/bias-variance explanation of 

MSA performance.  Inspection of FIGURE 3 indicates that other factors, such as DGP 

noise, also play a role.  But they suggest that the bias-variance framework is useful for 

understanding the performance of other MSAs whose penalty function properties are not 

easily established analytically, such as the portfolio model MSAs.  

Further insight into the performance of the MSAs can be gained by noting the 

relationship between the penalty function and the empirical non-null and null rejection 

frequencies, denoted potency and gauge (see Castle, Doornik and Hendry, 2008): 

(4)  



K

1k

MSA
k

MSA p
K

1
potency  

(5) 



L

1Kk

MSA
k

MSA p
KL

1
gauge  
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where 
 

,,

ˆ

L,1,2,k  
1000

0β1
p

1000

1r

MSA
rk,

MSA
k 




  is the retention rate.  Potency reports the 

probability of retaining a relevant variable for a given MSA.  Gauge reports the 

probability of retaining an irrelevant variable.   

The gauge is informative as a measure of the penalty function.  TABLE 4 reports 

the mean, median and standard deviation of the gauge for each of the MSAs over all 

experiments.  The table orders MSAs from lowest to highest mean gauge; i.e., in order of 

decreasing penalty functions.16 The increasing penalty functions for AIC < AICC < SIC 

< SICC are equivalent to decreasing gauges, as can be seen by both the mean and median 

gauge in TABLE 4. The mean gauge for AIC is 17%, compared to 3% for SIC. Hence, 

when there are many irrelevant variables and fewer relevant variables the tighter SIC 

criterion will outperform AIC and vice versa.  

MSAs with larger penalty functions will also have lower potencies, or at least no 

higher potencies.  FIGURE 2 records average potencies for the four IC MSAs averaged 

across the 360 experiments for each ψ. At low non-centralities the tighter criterion for 

SIC is most evident, reducing the potency relative to AIC, but at higher non-centralities 

the potencies converge towards unity. The IC potencies are close to the analytic retention 

probabilities (TABLE A2) when the gauge is matched to the nominal significance level, 

α.  The higher retention rates of AIC versus SIC works to its advantage when there are 

many relevant variables and fewer irrelevant variables. 

                                                 
16 Four MSAs have a gauge of unity for all experiments:  LLWeighted_All, LLWeighted_Selected, 

ALLVARS and 10AIC  .  In these cases, the notion of a “penalty function” is not well defined, because 
these MSA retain all variables by construction, albeit assigning different weights to estimated coefficients 
across models. 
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Progress towards identifying best MSAs.  Having identified factors that affect 

MSA performance, it would be useful if our empirical results could provide guidance as 

to which MSA is most likely to produce the “best” model specification.  Unfortunately, 

we know from TABLE 2 that no single MSA will be best in all circumstances.  Further, 

we have shown this follows from the fact that the same penalty function behavior that 

confers an advantage to an MSA in one environment, will work to its disadvantage in 

another.  However, since not all data environments are likely to be of equal interest to 

users of MSAs, we narrow our analysis to a subset of our experiments. 

 FIGURE 4 reports the same experiments as FIGURE 3, highlighting once again 

the effects of K, L, and  on MSA performance.  For reasons discussed below, we now 

focus on the performance of AUTO_1%, which is represented by the solid, boldface line.  

All other MSAs are represented by dotted, non-boldfaced lines.   

 AUTO_1% generally performs very well when ψ is low (cf. the first three rows of 

FIGURE 4) and the ratio of relevant to irrelevant variables, 
L

K
, is relatively small (cf. the 

lefthand side of each of the graphs in FIGURE 4).  FIGURE 5 investigates the robustness 

of these results as sample size increases from N = 75 to N = 150, 500, and 1500.  As 

before, the solid, boldfaced line represents AUTO_1%.   

 FIGURE 5 also highlights AUTO_Variable, which is represented by a dotted, 

boldfaced line.  AUTO_Variable sets the significance level to 0%10
N

61
0.9


.
, as 

recommended by Hendry (1995) for large N.  Note that 1% )(0%10
N

61
0.9 
.

 when 
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281 )(N  .  A comparison of AUTO_1% and AUTO_Variable is enlightening given 

the earlier discussion on the relationship between MSA performance and K. 

 If we take the significance levels as a measure of the effective penalty functions 

associated with these MSAs (TABLE 4 confirms that the gauge is very close to the 

nominal significance level for AUTO), then FIGURE 5 is consistent with the bias-

variance explanation that we previously used to explain the performance of SIC versus 

AIC:  When , AUTO_1% has a larger penalty function than AUTO_Variable and 

thus performs better (worse) when K is relatively small (large).  When , the 

positions are reversed as AUTO_Variable has the larger penalty function.  Even so, there 

is relatively little difference in MSA performance between these two, even at large N. 

281 N 

281 N 

 We now identify a subset of our experiments that may be of particular interest to 

practitioners.  In many situations, there will not be a need for automated routines to sort 

through alternative model selections.  However, there are situations where automated 

selection can be of great value.  Arguably, these will occur when the following two 

conditions hold: 

1. The researcher believes, on the basis of a priori judgment, that there are many 
more candidate than relevant variables, making it difficult to decide which ones to 
select 

 
2. There a substantial degree of DGP noise, so that many variables are on the edge 

of statistical significance 
 
In the context of our simulations, and informed by FIGURES 4 and 5, we map these two 

conditions to (i) 50
L

K
.  and (ii) 2 .  TABLE 5 analyzes MSA performance for the 

58 experiments where (i) half or less of the candidate variables are relevant and (ii) the 

sample t-statistics for the relevant variables have an expected value of either 1 or 2. 
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 Panel A repeats the analysis of TABLE 2 for the restricted set of 58 experiments.  

As before, MSAs are ranked in decreasing order of performance.  The three Autometrics 

MSAs are (again) the top performers, but this time AUTO_1% and AUTO_Variable are 

virtually tied for best.  Substantially further back (over two full ranks higher), are the two 

forward-stepwise algorithms, FW_1% and FW_Variable.  Still further back are the 

information criteria MSAs.   

 Another look at the superior performance of the Autometrics MSAs is provided by 

Panel B of TABLE 5.  These results report the frequency at which the respective 

Autometrics MSAs perform as well or better than all other MSAs – where “as well or 

better” means that the respective MSA has a rank equal to or lower than all other, non-

Autometrics MSAs.  AUTO_1% did at least as well as all other non-Autometrics MSAs in 

54 out of 58 experiments (93.1%).  AUTO_Variable did at least as well in 53 of the 58 

experiments (91.4%).  We emphasize again that these results make no allowance for 

sampling error in the experiments. 

We once again test for significant differences across the MSAs.  FIGURE 6 

records 




 MSA
UMSEln  values for the 58 experiments with 50

L

K
.  and 2 , along 

with the ±2σ bands. The AUTO MSAs are significantly better than the mean for these 

experiments, supporting the results in TABLE 5.  Further, there is a close correspondence 

between the  




 MSA
UMSEln  values in FIGURE 6 and the UMSE ranks in TABLE 5.  Not 

only that, there is also close correspondence between the UMSE ranks in TABLE 5 and 

the mean gauge values in TABLE 4.  Since gauge provides a measure of an MSA’s 
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effective penalty function, this provides further support for our penalty function 

explanation of MSA performance. 

While penalty function behavior appears to be a main driver of MSA performance 

when 50
L

K
.  and 2 , it is noteworthy that the correspondence is not perfect.  Each 

of the AUTO MSAs has a slightly higher gauge (i.e., a looser penalty function) than its 

FW analog due to searching many reduction paths, yet the AUTO MSAs outperform in 

each case (compare AUTO_1% with FW_1%, AUTO_Variable with FW_Variable, and 

AUTO_5% with FW_5% in TABLES 4 and 5).  We conjecture that while penalty 

function behavior is the main determinant of MSA performance in these data 

environments, there are other factors.  Specifically, as Autometrics applies bias correction 

after selection it will drive retained coefficient estimates near the critical value towards 

the origin.  This supplements its penalty function behavior and may be the explanation 

for why Autometrics is able to dominate FW MSAs with identical nominal significance 

levels, despite having higher gauge. 

 

IV.  CONCLUSION 

Whether automated model selection algorithms (MSAs) are desirable is a subject that 

elicits strong responses (see e.g., Hansen, 2005).  This review does not take a position on 

this issue.  Instead, its main goal has been to identify factors that explain why MSAs 

succeed or fail in given data environments.   

 We compare twenty-one different MSAs, representing a variety of approaches 

including (i) information criteria such as AIC and SIC; (ii) selection of a “portfolio” or 

best subset of models; (iii) general-to-specific algorithms, (iv) forward-stepwise 
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regression approaches; (v) Bayesian Model Averaging; and (vi) inclusion of all variables.  

We use unconditional mean-squared error (UMSE) as our performance measure.   

 Among other results, we find that many MSAs differ substantially in their 

performance with respect to relevant and irrelevant variables.  As the ratio of relevant to 

irrelevant variables changes, so do the relative performances of the MSAs.  We relate 

these performance differences to the effective penalty functions associated with adding 

variables.  MSAs with large effective penalty functions tend to do well when there are 

few relevant variables and many irrelevant variables.  This occurs because the benefit of 

omitting irrelevant variables (lowered variance from assigning non-selected variables a 

coefficient of zero) dominates the cost of omitting relevant variables (greater bias).  As 

the ratio of irrelevant to relevant variables changes, so do the respective benefits and 

costs.  This implies that no MSA will dominate in all circumstances.  Even the worst 

MSA in terms of overall performance – the strategy of including all candidate variables – 

sometimes performs best (viz., when all candidate variables are relevant).  

Our comparison of different MSAs highlights the fact that MSAs differ in the 

weights they place on type I and type II errors. MSAs with loose criterion place more 

weight on type II errors and are less concerned with type I errors, retaining irrelevant 

variables with a very high probability. MSAs with tight criterion place a lot of weight on 

type I errors, controlling the null-rejection frequency at a cost of failing to retain relevant 

variables when they have low non-centralities. It is this trade-off that is at the heart of  

MSA performance.  

 While not our main goal, this review also supplies a very tentative 

recommendation to practitioners seeking guidance as to which MSA is “best.”  In many 
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situations there will be little need for automated routines to sort through alternative model 

specifications.  However, there are situations where automated selection can be of great 

value to practitioners.  Arguably, these will occur when (i) the researcher believes, on the 

basis of a priori judgment, that there are many more candidate than relevant variables, 

making it difficult to decide which ones to select; and (ii) there is a substantial degree of 

DGP noise, so that many variables are on the edge of statistical significance.   

 When we restrict our analysis to experiments where (i) half or less of the 

candidate variables are relevant, and (ii) the sample t-statistics for the relevant variables 

have an average value less than or equal to 2, we find that two Autometrics MSAs 

perform consistently better than all others: one uses a significance value of 1%, the other 

adjusts the significance value according to sample size.  These two MSAs did as well or 

better than all other MSAs in over 90% of the respective experiments.   

 While these results are promising, it needs to be emphasized that they arise in a 

rarefied testing environment.  Among other restrictions, our simulations assume 

orthogonal explanatory variables and spherical error terms.  It remains to be seen whether 

the superior performance of Autometrics carries over when these restrictions are relaxed.  

It is hoped that this review will stimulate further research along these lines. 
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TABLE 1 
Description of Model Selection Algorithms (MSAs) 

 

Information Criterion (IC) Algorithms: 

1) AIC    
N

2K2
σlnAIC 2 


~

ˆ  

2) AICC    
 3KN

1KN
σlnAICC 2




 ~

~
ˆ  

3) SIC      
N

Nln1K
σlnSIC 2 


~

ˆ  

4) SICC      
 3KN

Nln1K
σlnSICC 2




 ~

~
ˆ

kβ̂  is the estimate of  in the model with the minimum IC 

value.  If does not appear in that model, . 

kβ

kX 0βk ˆ

NOTE:   is the maximum likelihood estimate of the 

variance of the error term; 

2̂
K
~

 is the number of coefficients 
in the model excluding the intercept; and N is the number of 
observations. 

Portfolio Algorithms: 

5) AIC < 2 

6) AICC < 2 

7) SIC < 2 

8) SICC < 2 

kβ̂  is the average value of  estimates from the portfolio of models that lie within a distance kβ

2  of the respective minimum IC model, where  



  mminm ICIC

2

1
exp , ICmin  is the 

minimum IC value  among all 2L models, and ICm is the value of the respective IC in model m, 

m=1,2,…,2L.  If does not appear in any of the portfolio models, . kX 0βk ˆ

9) AIC < 10  

10) AICC < 10  

11) SIC < 10  

12) SICC < 10  

Same as above, except 10 . 
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General-to-Specific Regression Algorithms (Autometrics): 

13) AUTO_1% 

14) AUTO_5% 

15) AUTO_Variable 

kβ̂  is the estimate of  in the best model as selected by the Autometrics program in PcGive 

12, with the significance level, 

kβ

 , set equal to 1%, 5%, and 0%10
N

61
0.9


.

, respectively.  If 

does not appear in that model, .   is bias corrected using a two-step procedure. kX 0βk ˆ
kβ̂

Forward-Stepwise Regression Algorithms 

16) FW_1% 

17) FW_5% 

18) FW_Variable 

kβ̂  is the estimate of  in the best model as selected by the Forward Stepwise program in 

PcGive 12, with the significance level, 

kβ

 , set equal to 1%, 5%, and 0%10
N

61
0.9


.

, 

respectively.  If does not appear in that model, .   kX 0βk ˆ

Bayesian Model Averaging Algorithms: 

19) LLWeighted_All 

kβ̂  is the weighted average value of  estimates over all 2L models, where model weights 

are determined according to 

kβ




L

1
m

m






2

m

mω , m=1,2,…,2L, and  is the maximized value of the 

log likelihood function for model m.  For the 2L-1  models where does not appear in any of 

the portfolio models, . 

kX

0βk ˆ
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20) LLWeighted_Selected 

kβ̂  is the weighted average value of  estimates over the 2L-1 models where  is included 

in the regression equation.  Model weights are determined according to 
kβ kX

 






kX variable the contain that modelsm
m

m
mω




. 

All Variables: 

21) ALLVARS kβ̂  is the estimate of  in the specification in which all variables are included. kβ

 



 
 

TABLE 2 
Comparison of MSA Performance: All Experiments 
(Sorted By Mean UMSE Rank in Ascending Order) 

 

MSA Mean Median Minimum Maximum 

AUTO_5% 9.4 9.4 3.7 17.6 

AUTO_Variable 9.7 9.2 1.7 21.0 

AUTO_1% 9.9 9.2 1.1 21.0 

FW_1% 10.6 9.9 2.3 21.0 

SIC 10.6 10.6 4.7 18.1 

FW_Variable 10.8 9.8 3.4 21.0 

SICC 10.9 10.3 4.0 19.2 

SIC < 2 10.9 10.8 5.8 18.4 

FW_5% 11.0 10.7 7.3 20.2 

SICC < 2 11.1 11.0 5.4 18.8 

AICC < 10  11.1 11.2 3.4 18.5 

AICC < 2 11.1 11.5 3.3 15.6 

SIC < 10  11.2 11.0 6.7 20.0 

AIC < 2 11.2 11.8 2.6 16.9 

LLWeighted_All 11.2 11.9 1.0 16.6 

SICC < 10  11.3 11.1 5.6 20.1 

AICC 11.3 11.2 3.7 19.2 

AIC < 10  11.4 11.8 3.0 18.5 

AIC 11.6 12.1 3.1 19.0 

LLWeighted_Selected 11.8 12.5 1.9 19.7 

ALLVARS 12.7 14.0 1.0 20.9 
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TABLE 3 
Experimental Results for the Case: L = 10, N = 75, ψ = 2 

 

Mean Ranking of SIC Algorithm Over… Mean Ranking of AIC Algorithm Over… Number of 
Relevant 

Variables (K) 
All 

Variables 
(1) 

Irrelevant 
Variables 

(2) 

Relevant 
Variables 

(3) 

All 
Variables 

(4) 

Irrelevant 
Variables 

(5) 

Relevant 
Variables 

(6) 

1 8.0 7.1 16.0 13.6 14.1 9.0 

2 8.9 7.0 16.5 13.2 14.3 9.0 

3 9.9 7.1 16.3 12.7 14.3 9.0 

4 10.7 7.0 16.3 12.1 14.2 9.0 

5 11.7 7.4 16.0 11.4 14.2 8.6 

6 12.7 7.5 16.2 10.6 13.8 8.5 

7 13.5 7.3 16.1 10.0 14.3 8.1 

8 14.6 8.0 16.3 9.4 15.0 8.0 

9 15.4 8.0 16.2 8.6 14.0 8.0 

10 16.2 --- 16.2 8.0 --- 8.0 
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TABLE 4 
Comparison of MSA Gauge: All Experiments 
(Sorted By Mean Gauge in Ascending Order) 

 

MSA Mean Median 
Standard 
Deviation 

FW_1% 1.0% 1.0% 0.3% 

AUTO_1% 1.4% 1.2% 0.7% 

FW_Variable 2.2% 2.3% 1.5% 

SICC 2.3% 2.4% 1.2% 

AUTO_Variable 2.6% 3.0% 1.8% 

SIC 3.4% 3.7% 2.0% 

SIC < 2 4.8% 5.2% 2.4% 

FW_5% 5.1% 5.0% 0.6% 

AUTO_5% 5.4% 5.3% 0.9% 

SICC < 2 7.2% 8.0% 4.2% 

SICC < 10  8.1% 8.9% 4.0% 

SIC < 10  12.3% 13.5% 7.1% 

AICC 14.3% 14.5% 1.1% 

AIC 17.4% 16.5% 2.4% 

AICC < 2 36.1% 36.6% 4.9% 

AIC < 2 45.3% 44.4% 2.5% 

AICC < 10  85.4% 96.9% 18.5% 

LLWeighted_All 100% 100% 0% 

AIC < 10  100% 100% 0% 

LLWeighted_Selected 100% 100% 0% 

ALLVARS 100% 100% 0% 
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TABLE 5 

Comparison of MSA Performance: Experiments Where 2ψ  and 0.5
L

K
  

 
 

A.  Comparison of UMSE Ranks (Sorted in Ascending Order of Mean UMSE 
Rank) 

 

MSA Mean Median Minimum Maximum 

AUTO_1% 4.6 4.0 1.1 10.6 

AUTO_Variable 4.8 3.8 1.7 10.6 

AUTO_5% 6.4 6.3 3.7 9.3 

FW_1% 7.0 7.0 2.7 12.4 

FW_Variable 7.9 7.9 3.4 12.4 

SICC 8.5 8.0 5.0 12.3 

SIC 9.2 9.2 5.2 12.1 

SICC < 2 10.6 10.4 8.2 14.0 

FW_5% 10.9 10.7 8.1 16.3 

SIC < 2 11.1 10.8 8.6 14.5 

LLWeighted_All 11.6 11.8 7.8 14.2 

SICC < 10  11.9 11.5 10.5 15.2 

SIC < 10  12.3 12.1 10.9 15.3 

AICC 12.7 12.8 10.8 15.4 

AIC 13.5 13.6 10.9 16.5 

AICC < 2 13.7 14.0 11.0 15.6 

AIC < 2 14.0 14.5 11.0 16.5 

AICC < 10  14.2 14.2 10.9 18.3 

AIC < 10  14.8 14.8 10.9 18.1 

LLWeighted_Selected 14.9 15.0 10.5 19.2 

ALLVARS 16.3 16.8 10.3 20.4 
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B.  Percent of Experiments Where Autometrics MSAs Perform  
as Well or Better Than All Other MSAs 

 

MSA Percent 

AUTO_1% 93.1 

AUTO_Variable 91.4 

AUTO_5% 46.6 

 

NOTE:  There are a total of 58 experiments where 2ψ  and 0.5
L

K
 . 
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FIGURE 1 
Log of the mean UMSE for each MSA with ±2σ bands across all 360 experiments (3900 MSEs per MSA) 
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FIGURE 2 
Average potencies for the four IC MSAs for non-centralities from ψ=1 to ψ=6. 
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FIGURE 3 
Rankings of MSAs as a Function of K, ψ, and L (N = 75) 
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PSI = 4, L = 5 PSI = 4, L = 10 PSI = 4, L = 15
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FIGURE 4 

Rankings of MSAs as a Function of K, ψ, and L (N = 75) 
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FIGURE 5 

Rankings of MSAs as a Function of K, ψ, and N (L = 10) 
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FIGURE 6 
Log of the mean UMSE for each MSA across 58 experiments where K/L≤0.5 and ψ≤2 with ±2σ bands 
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TABLE A1 
Retention Probabilities as a Function of ψ and α (for N=75) 

 
 
  ψtE|ctP kαk   

kψ  

%5α 0  %α 20  5%α   %α 1  

1 62.6% 38.5% 16.1% 5.0% 

2 90.7% 76.0% 50.3% 26.0% 

3 99.0% 95.6% 84.3% 63.9% 

4 100% 99.7% 97.8% 91.3% 

5 100% 100% 99.9% 99.1% 

6 100% 100% 100% 100% 
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TABLE A2 
Total Number of Experiments by ψ and N 

 

 N=75 N=150 N=500 N=1500 TOTAL 

ψ=1 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

ψ=2 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

ψ=3 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

ψ=4 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

ψ=5 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

ψ=6 
L=5,10,15 

(30 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
L=10 

(10 experiments) 
60 

TOTAL 180 60 60 60 360 
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FIGURE A1 

Rankings of MSAs as a Function of K, ψ, and N (L = 10) 
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