36 research outputs found

    Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario

    Get PDF
    The photodegradation of polycyclic aromatic hydrocarbons (PAHs) in two typical Mediterranean soils, either coarse- or fine-textured, was here investigated. Soil samples, spiked with the 16 US EPA priority PAHs, were incubated in a climate chamber at stable conditions of temperature (20 degrees C) and light (9.6 W m(-2)) for 28 days, simulating a climate change base scenario. PAH concentrations in soils were analyzed throughout the experiment, and correlated with data obtained by means of Microtox (R) ecotoxicity test. Photodegradation was found to be dependent on exposure time, molecular weight of each hydrocarbon, and soil texture. Fine-textured soil was able to enhance sorption, being PAHs more photodegraded than in coarse-textured soil. According to the EC50 values reported by Microtox (R), a higher detoxification was observed in fine-textured soil, being correlated with the outcomes of the analytical study. Significant photodegradation rates were detected for a number of PAHs, namely phenanthrene, anthracene, benzo(a)pyrene, and indeno(123-cd)pyrene. Benzo(a)pyrene, commonly used as an indicator for PAH pollution, was completely removed after 7 days of light exposure. In addition to the PAH chemical analysis and the ecotoxicity tests, a hydrogen isotope analysis of benzo(a)pyrene was also carried out. The degradation of this specific compound was associated to a high enrichment in H-2, obtaining a maximum delta H-2 isotopic shift of +232 parts per thousand. This strong isotopic effect observed in benzo(a) pyrene suggests that compound-specific isotope analysis (CSIA) may be a powerful tool to monitor in situ degradation of PAHs. Moreover, hydrogen isotopes of benzo(a)pyrene evidenced a degradation process of unknown origin occurring in the darkness. (C) 2016 Elsevier Ltd. All rights reserved

    Genetics In Endocrinology: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 "DSDnet"

    Get PDF
    The differential diagnosis of differences or disorders of sex development (DSD) belongs to the most complex fields in medicine. It requires a multidisciplinary team conducting a synoptic and complementary approach consisting of thorough clinical, hormonal and genetic workups. This position paper of EU COST (European Cooperation in Science and Technology) Action BM1303 "DSDnet" was written by leading experts in the field and focuses on current best practice in genetic diagnosis in DSD patients. Ascertainment of the karyotpye defines one of the three major diagnostic DSD subclasses and is therefore the mandatory initial step. Subsequently, further analyses comprise molecular studies of monogenic DSD causes or analysis of copy number variations (CNV), or both. Panels of candidate genes provide rapid and reliable results. Whole exome and genome sequencing (WES and WGS) represent valuable methodological developments that are currently in the transition from basic science to clinical routine service in the field of DSD. However, in addition to covering known DSD candidate genes, WES and WGS help to identify novel genetic causes for DSD. Diagnostic interpretation must be performed with utmost caution and needs careful scientific validation in each DSD case

    Addressing gaps in care of people with conditions affecting sex development and maturation

    Get PDF
    Differences of sex development are conditions with discrepancies between chromosomal, gonadal and phenotypic sex. In congenital hypogonadotropic hypogonadism, a lack of gonadotropin activity results primarily in the absence of pubertal development with prenatal sex development being (almost) unaffected in most patients. To expedite progress in the care of people affected by differences of sex development and congenital hypogonadotropic hypogonadism, the European Union has funded a number of scientific networks. Two Actions of the Cooperation of Science and Technology (COST) programmes - DSDnet (BM1303) and GnRH Network (BM1105) - provided the framework for ground-breaking research and allowed the development of position papers on diagnostic procedures and special laboratory analyses as well as clinical management. Both Actions developed educational programmes to increase expertise and promote interest in this area of science and medicine. In this Perspective article, we discuss the success of the COST Actions DSDnet and GnRH Network and the European Reference Network for Rare Endocrine Conditions (Endo-ERN), and provide recommendations for future research

    Gonadectomy in conditions affecting sex development: a registry-based cohort study

    Get PDF
    Objectives To determine trends in clinical practice for individuals with DSD requiring gonadectomy. Design Retrospective cohort study. Methods Information regarding age at gonadectomy according to diagnosis; reported sex; time of presentation to specialist centre; and location of centre from cases reported to the International DSD Registry and who were over 16 years old in January 2019. Results Data regarding gonadectomy were available in 668 (88%) individuals from 44 centres. Of these, 248 (37%) (median age (range) 24 (17, 75) years) were male and 420 (63%) (median age (range) 26 (16, 86) years) were female. Gonadectomy was reported from 36 centres in 351/668 cases (53%). Females were more likely to undergo gonadectomy (n = 311, P < 0.0001). The indication for gonadectomy was reported in 268 (76%). The most common indication was mitigation of tumour risk in 172 (64%). Variations in the practice of gonadectomy were observed; of the 351 cases from 36 centres, 17 (5%) at 9 centres had undergone gonadectomy before their first presentation to the specialist centre. Median age at gonadectomy of cases from high-income countries and low-/middle-income countries (LMIC) was 13.0 years (0.1, 68) years and 16.5 years (1, 28), respectively (P < 0.0001) with the likelihood of long-term retention of gonads being higher in LMIC countries. Conclusions The likelihood of gonadectomy depends on the underlying diagnosis, sex of rearing and the geographical setting. Clinical benchmarks, which can be studied across all forms of DSD will allow a better understanding of the variation in the practice of gonadectomy

    Ten novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and ovarian insufficiency in 46,XX individuals

    Get PDF
    Steroidogenic factor-1 (SF-1/NR5A1) is a nuclear receptor that regulates adrenal and reproductive development and function. NR5A1 mutations have been detected in 46,XY individuals with disorders of sexual development (DSD) but apparently normal adrenal function and in 46,XX women with normal sexual development yet primary ovarian insufficiency (POI)

    Preliminary analysis of two and three dimensional crystals of vault ribonucleoprotein particles

    No full text
    Vaults are large ribonucleoprotein particles found in a wide variety of eukaryotes. When imaged by electron-microscopy vaults present a strikingly conserved barrel-shaped structure with an invaginated waist and two protruding caps. In this work, we present two dimensional (2D) and three dimensional (3D) crystals of naturally produced vaults in murine and monkey cells, respectively. The 2D-crystals presented a hexagonal packing with the lattice parameter defined by the diameter of the vault barrel. Fourier transforms from images of the negatively stained 2D-crystals showed spots till about 45 Å resolution. The 3D-crystals reached about 0.15 × 0.15 × 0.02 mm3 in size and presented a flat triangular morphology with well-developed faces. The preliminary characterization of these 3D-crystals, which diffract very weakly to ∼10 Å resolution, suggests a trigonal packing with the R32 space group symmetry. The 3D-crystals appear to be formed by adding layers of vaults, which retain the hexagonal organization seen in the 2D-crystals, with relative shifts that maximize the interdigitation of particles in adjacent layers. Accurate crystal symmetry in the 2D- and 3D-crystals requires neighbor particles interacting according to a 6-fold and a 3-fold dihedral symmetry, respectively. Compatibility with the reported 8-fold symmetry would imply multiples of 24-fold rotational symmetry, in agreement with the recently proposed 48-fold dihedral symmetry for reconstituted recombinant vaults. © 2005 Elsevier Inc. All rights reserved.The work was supported by Grants BIO2002-04419 and BIO2002-00517 to I.F. and N.V., respectivelyPeer Reviewe

    Source apportionment of inorganic and organic PM in the ambient air around a cement plant: Assessment of complementary tools

    No full text
    In this study, we analyzed the sources of ambient PM inorganic and organic components near a cement plant using fossil fuels as well as alternative fuels, such as sewage sludge and biomass. Source apportionment methodologies, i.e., principal component analysis (PCA) and multivariate curve resolution by alternating least squares (MCR-ALS), and carbon isotope analysis (δ13C) were used to determine the potential sources and their contributions. Four sources of PM10 main tracer compounds constituents were identified: Marine and secondary inorganic aerosol, cement plant/industrial, traffic and crustal. The contributions of those sources varied significantly depending on the period of the year. However, the inorganic tracer PM species in the area were mainly released by combustion sources, namely traffic and the activity of the cement plant, especially in winter months. The analyses of tracer organic compounds also indicated combustion sources, i.e., biomass burning and fossil fuel combustion, as the predominant contributors to ambient air PM (62, 59 and 69%, in PM10, PM2.5 and PM1, respectively). Organic dust was a significant source of PM10 (33%) while its contribution was found to be minor in the finest fractions (9 and 2% in PM2.5 and PM1, respectively). Results of δ13C corroborated a significant contribution of combustion sources, traffic or biomass fuel as well as a higher influence of mineral (calcite) powder in larger particles. © Taiwan Association for Aerosol Research.This study was financed by the Spanish Ministry of Economy and Competitiveness (MINECO), as part of the projects CTM2012-32778 (F. S?nchez-Sober?n received a doctoral scholarship as part of the project above mentioned), CTM2015-65303 and CGL2014-57215-C4-1-R, as well as by the Catalan Government, through the projects 2014SGR90 and 2014SGR1456. The authors also want to thank LAFARGE CEMENTOS SAU for their help during the sampling.Peer reviewe

    Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are airborne pollutants that are deposited on soils. As climate change is already altering temperature and solar radiation, the global warming is suggested to impact the environmental fate of PAHs. This study was aimed at evaluating the effect of climate change on the PAH photodegradation in soils. Samples ofMediterranean soilswere subjected to different temperature and light radiation conditions in a climate chamber. Two climate scenarios were considered according to IPCC projections: 1) a base (B) scenario, being temperature and light intensity 20 °C and 9.6W/m2, respectively, and 2) a climate change (CC) scenario,working at 24 °C and 24W/m2, respectively. As expected, low molecularweight PAHswere rapidly volatilizedwhen increasing both temperature and light intensity. In contrast, medium and high molecular weight PAHs presented different photodegradation rates in soils with different texture, which was likely related to the amount of photocatalysts contained in both soils. In turn, the hydrogen isotopic composition of some of the PAHs under study was also investigated to verify any degradation process. Hydrogen isotopes confirmed that benzo(a)pyrene is degraded in both B and CC scenarios, not only under light but also in the darkness, revealing unknown degradation processes occurring when light is lacking. Potential generation pathways of PAH photodegradation by-products were also suggested, being a higher number of metabolites formed in the CC scenario. Consequently, in a more or less near future, although humans might be less exposed to PAHs, they could be exposed to new metabolites of these pollutants, which might be even more toxic
    corecore