1,295 research outputs found
Mott-insulator phases of non-locally coupled 1D dipolar Bose gases
We analyze the Mott-insulator phases of dipolar bosonic gases placed in
neighboring but unconnected 1D traps. Whereas for short-range interactions the
1D systems are independent, the non-local dipole-dipole interaction induces a
direct Mott-insulator to pair-superfluid transition which significantly
modifies the boundaries of the lowest Mott-insulator phases. The lowest
boundary of the lowest Mott regions becomes progressively constant as a
function of the hopping rate, eventually inverting its slope, leading to a
re-entrant configuration which is retained in 2D. We discuss the consequences
of this effect on the spatial Mott-insulator plateaux in experiments with
additional harmonic confinement, showing that anti-intuitively the plateaux may
become wider for increasing hopping. Our results are also applicable to
non-dipolar boson-boson mixtures.Comment: 4 pages, 4 eps figures; minor changes, reference adde
An effective many-body theory for strongly interacting polar molecules
We derive a general effective many-body theory for bosonic polar molecules in
strong interaction regime, which cannot be correctly described by previous
theories within the first Born approximation. The effective Hamiltonian has
additional interaction terms, which surprisingly reduces the anisotropic
features of dipolar interaction near the shape resonance regime. In the 2D
system with dipole moment perpendicular to the plane, we find that the phonon
dispersion scales as \sqrt{|\bfp|} in the low momentum (\bfp) limit,
showing the same low energy properties as a 2D charged Bose gas with Coulomb
() interactions.Comment: Same as published version (11 pages, 2 figure
Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula
Extremely high velocity emission likely related to jets is known to occur in
some proto-Planetary Nebulae. However, the molecular complexity of this
kinematic component is largely unknown. We observed the known extreme outflow
from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in
the full frequency range from 73 to 111 GHz with the RSR receiver on the Large
Millimetre Telescope. We detected the molecules SiO, HCN, SO, and CO.
All molecular transitions, with the exception of the latter are detected for
the first time in this source, and all present emission with velocities up to a
few hundred km s. IRAS 16342-3814 is therefore the only source of this
kind presenting extreme outflow activity simultaneously in all these molecules,
with SO and SiO emission showing the highest velocities found of these species
in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component
with a FWHM 700 km s. The extreme outflow gas consists of dense
gas (n 10--10 cm), with a mass larger than
0.02--0.15 M. The relatively high abundances of SiO and SO may
be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society Letter
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube
We present constraints derived from a search of four years of IceCube data
for a prompt neutrino flux from gamma-ray bursts (GRBs). A single
low-significance neutrino, compatible with the atmospheric neutrino background,
was found in coincidence with one of the 506 observed bursts. Although GRBs
have been proposed as candidate sources for ultra-high energy cosmic rays, our
limits on the neutrino flux disfavor much of the parameter space for the latest
models. We also find that no more than of the recently observed
astrophysical neutrino flux consists of prompt emission from GRBs that are
potentially observable by existing satellites.Comment: 15 pages, 3 figure
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Light Sterile Neutrinos: A White Paper
This white paper addresses the hypothesis of light sterile neutrinos based on
recent anomalies observed in neutrino experiments and the latest astrophysical
data
Lowering IceCube’s energy threshold for point source searches in the southern sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background
- …
