4,845 research outputs found

    Group Self‐Interest vs. Equity:Explaining Support for Horizontal Redistribution in (Former) Competitive Clientelist States

    Get PDF
    Extant literature links intergroup disparities, or horizontal inequalities, in Sub‐Saharan Africa to the unequal representation of ethnic groups in central power, who accumulate wealth at the expense of politically marginalized groups. Over time, these politically‐induced inequalities have trapped some ethnic groups in positions of relative disadvantage. Group‐based, or horizontal, redistribution can help redress these inequalities yet require popular support if they are not to contribute to intergroup tensions. In this article, we examine how people’s experiences of political exclusion, on the one hand, and their attributional beliefs about the causes of political exclusion, on the other, condition support for government policies aimed at eradicating economic inequalities between different ethnic groups. We argue that people are more likely to be supportive of horizontal redistribution either when (H1a) they belong to ethnic groups that have not had access to central power, and/or (H1b) feel that their ethnic group is politically marginalized (and thus stands to gain); or when (H2) they attribute the political exclusion of the politically marginalized group(s) that stand(s) to benefit from these policies to the legacies of colonialism and clientelism (thus seeking to foster equity). To test our hypotheses, we examine these issues in the context of Kenya, a society with politically salient ethnic cleavages and a history of clientelism. Based on a unique online survey involving 2,286 Kenyans, we show that, notwithstanding group self‐interest being at play, there is strong support for horizontal redistribution across groups

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    Modeling meander morphodynamics over self-formed heterogeneous floodplains

    Get PDF
    This work addresses the signatures embedded in the planform geometry of meandering rivers consequent to the formation of floodplain heterogeneities as the river bends migrate. Two geomorphic features are specifically considered: scroll bars produced by lateral accretion of point bars at convex banks and oxbow lake fills consequent to neck cutoffs. The sedimentary architecture of these geomorphic units depends on the type and amount of sediment, and controls bank erodibility as the river impinges on them, favoring or contrasting the river migration. The geometry of numerically generated planforms obtained for different scenarios of floodplain heterogeneity is compared to that of natural meandering paths. Half meander metrics and spatial distribution of channel curvatures are used to disclose the complexity embedded in meandering geometry. Fourier Analysis, Principal Component Analysis, Singular Spectrum Analysis and Multivariate Singular Spectrum Analysis are used to emphasize the subtle but crucial differences which may emerge between apparently similar configurations. A closer similarity between observed and simulated planforms is attained when fully coupling flow and sediment dynamics (fully-coupled models) and when considering self-formed heterogeneities that are less erodible than the surrounding floodplain

    The design of an omnidirectional antenna system for the Apollo spacecraft

    Get PDF
    Omnidirectional radio antenna system design for Apollo command modul

    Pengembangan Tungku Gasifikasi Arang Biomassa Tipe Natural Draft Gasification Berdasarkan Analisis Computational Fluid Dynamics (CFD)

    Get PDF
    A biomass stove based on natural draft gasification (NDG) has been developed in a previous study (Nelwa, et al. 2013) by using simulation based on heat transfer and equilibrium modeling. In this study, a CFD simulation was performed in order to analyze the effect of chimney height, and inlet hole diameter of the stove to the performance of the stove. The results of simulation showed that power produced by stove was between 1863.9 J/s until 2585.7 J/s, and its gasification efficiency was 67.11%. The results of simulation also showed that charcoal gasification produces combustible gases (CO, CH4, and H2) at the bottom and the center of stove, and then they were oxidized by secondary air at the top of stove. This oxidation reaction produces sufficient heat energy which can be used for cooking process

    Penyebaran Pencemar Udara Di Kawasan Industri Cilegon(the Dispersion Air Polutant at Cilegon Insdustry Area)

    Get PDF
    The dispersion of the air polution, especially from the industry is much decided by the height of the stack, the higher the stack the farthest pollutant being emitted. To analyze the pollutant dispersion in the industrial area, Screen3 model US-EPA from Environmental Protection Agency, USA is used. This model is used to analyze the pollutant dispersion emiitted by factories. After implementing the model to various atmosphere stability, it is found that the fastest the wind velocity, the bigger the maximum pollutant concentration emitted and the smaller the distance dispersion. After implementing the model with the wind velocity of 2.45 m/s , it is found that the air pollution (SO2) in Pulomerak area, the maximum concentration of pollutan is 252.20 μg/m3 with the dispersion distance of 4664 m. Meanwhile, based on the measurement, with the same wind velocity at the same area, the maximum concentration of the pollutant is of 29.57 μg/m3. Within the atmosphere C to E, the two pollutants spread out at the range of 9921 m to 18800 m from the source

    Electropolymerized Layersas Selective Membranesin First Generation Uric Acid Biosensors

    Get PDF
    Electropolymerized films that can serve as semi-permeable membranes and provide selectivity within a xerogel-based, 1stgeneration biosensor assembly are explored in this study. Layered biosensing schemes of this nature rely primarily upon an electropolymerized ad-layer to supplement the xerogel and provide effective selectivity for detection of a targeted analyte. While effective electropolymers have been established for glucose sensing, the adaptation of the strategy to other analytes of clinical importance hinges upon the systematic evaluation of electropolymerized films to identify a selective film. Uric acid is a key species in the diagnosis/monitoring of a number of diseases and conditions. An effective uric acid biosensor, exhibiting high selectivity against common interferent species while maintaining uric acid sensitivity across physiologically relevant concentrations, would represent significant sensor development. Cyclic voltammetry allows for initial electropolymerization as well as the verification of polymer-modified electrodes. By forming electropolymerized films at glassy carbon electrodes, the sensitivity and permeability index toward uric acid and other interferents is readily measured via amperometric current responses. Of the significant number of polymer films examined in the study, only those films formed from luminol/aniline and luminol/Nafion mixtures showed positive selectivity coefficients for uric acid when incorporated into the layered xerogel schemes. The use of these specific mixed polymer films within the biosensing scheme resulted in well-defined amperometric responses to uric acid, linear calibration curves across clinically relevant uric acid concentrations, and effective selectivity for uric acid with discrimination against all major interferents except acetaminophen. The demonstrated and systematic evaluation of a specifically selective electropolymerized film is an important advancement for uric acid biosensor development as well as further adaptation of biosensing strategies involving polymer interfaces to other targeted analytes

    A Method to Improve the Early Stages of the Robotic Process Automation Lifecycle

    Get PDF
    The robotic automation of processes is of much interest to organizations. A common use case is to automate the repetitive manual tasks (or processes) that are currently done by back-office staff through some information system (IS). The lifecycle of any Robotic Process Automation (RPA) project starts with the analysis of the process to automate. This is a very time-consuming phase, which in practical settings often relies on the study of process documentation. Such documentation is typically incomplete or inaccurate, e.g., some documented cases never occur, occurring cases are not documented, or documented cases differ from reality. To deploy robots in a production environment that are designed on such a shaky basis entails a high risk. This paper describes and evaluates a new proposal for the early stages of an RPA project: the analysis of a process and its subsequent design. The idea is to leverage the knowledge of back-office staff, which starts by monitoring them in a non-invasive manner. This is done through a screen-mousekey- logger, i.e., a sequence of images, mouse actions, and key actions are stored along with their timestamps. The log which is obtained in this way is transformed into a UI log through image-analysis techniques (e.g., fingerprinting or OCR) and then transformed into a process model by the use of process discovery algorithms. We evaluated this method for two real-life, industrial cases. The evaluation shows clear and substantial benefits in terms of accuracy and speed. This paper presents the method, along with a number of limitations that need to be addressed such that it can be applied in wider contexts.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-
    corecore