Supporting Materials

Electropolymerized Layers as Selective Membranes in First Generation Uric Acid Biosensors

Kaiwen Chen,^{a, †} Grace E. Conway,^{a, †} Gregory A. Hamilton,^b Matthew L. Trawick,^b and Michael C. Leopold ^{a,*}

^aDepartment of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173

^bDepartment of Physics, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173

Contents:

- ▶ Profilometry measurements of film thickness using the atomic force microscope (Fig. SM-1).
- ► Cyclic voltammetry deposition and evaluation of a polyluminol, polypyrrole, Nafion, polytyramine, and polyphenol films (Figs. SM-2 to SM-6).
- Experimental procedures for additional mixed polymer film formation .
- ► Table SM-1 Permeability Indices (PI) for Interferents and Uric Acid at Electropolymerized Films on Glassy Carbon Electrodes (%)
- Amperometric I-t curves or injections of interferents and uric acid at full biosensing schemes using mixed PLUM-PANI vs. pure aniline electropolymerized layers – effective selectivity vs. poor selectivety, respectively.
- Uric acid calibration curves at platinum electrodes modified with UOx-doped OTMS xerogel, undoped OTMS xerogel, (a) Nafion-Luminol, (b) luminol-aniline (1:10),or (c) luminol-aniline (10:1) and capped with hydrothane polyurethane.

[†] These authors contributed equally to this work.

* To whom correspondence should be addressed. Email: mleopold@richmond.edu. Phone: (804) 287-6329. Fax: (804) 287-1897.

Figure SM-1. Representative images (**A**) for profilometric AFM measurement of the polymerized film thickness: (**a**) optical image of polyphenol film electropolymerized at a evaporated gold substrate and $20 \times 20 \,\mu$ m images of the edge of polymerized films of phenol (**b**) and tyramine (**c**); (**B**) cross-sectional analysis of the polyphenol film across the edge of the polymer film.

Figure SM-2. Cyclic voltammetry for (**A**) 0.5 mM luminol (degassed 0.1 M H_2SO_4) during electropolymerization at a GCE (50 mV·sec⁻¹); (**B**) polyluminol (PLUM) modified and bare GCEs in 65.55 mM PBS (no monomer) solution (40 mV·sec⁻¹); and; (C) 5 mM ferricyanide (0.5 M KCl) at bare and PLUM-modified GCE to confirm the presence of the electropolymer film (250 mV·sec⁻¹).

Figure SM-3. Cyclic voltammetry for (**A**) 0.1 M pyrrole (0.1 M H_2SO_4 , degassed) during electropolymerization at a GCE (50 mV·sec⁻¹); (**B**) polypyrrole modified and bare GCEs in 65.55 mM PBS (no monomer) solution (50 mV·sec⁻¹); and; (C) 5 mM ferricyanide (0.5 M KCl) at bare and polypyrrole-modified GCE to confirm the presence of the electropolymer film (250 mV·sec⁻¹).

Figure SM-4. Cyclic voltammetry for (**A**) 5% Nafion during electropolymerization at a GCE (50 mV \cdot sec⁻¹); (**B**) Nafion-modified and bare GCEs in 65.55 mM PBS (no monomer) solution (50 mV \cdot sec⁻¹) and; (C) 5 mM ferricyanide (0.5 M KCl) at bare and Nafion-modified GCE to confirm the presence of the electropolymer film (250 mV \cdot sec⁻¹).

Figure SM-5. Cyclic voltammetry for (**A**) 0.1 M tyramine (0.3 M NaOH, MeOH) during electropolymerization at a GCE (500 mV \cdot sec⁻¹); (**B**) polytyramine-modified GCE in 65.55 mM PBS (no monomer) solution (500 mV \cdot sec⁻¹) and; (C) 5 mM ferricyanide (0.5 M KCl) at bare and polytyramine-modified GCE to confirm the presence of the electropolymer film (250 mV \cdot sec⁻¹).

Figure SM-6. Cyclic voltammetry for 5 mM ferricyanide (0.5 M KCl) at bare and phenolmodified GCE to confirm the presence of the electropolymer film (250 mV \cdot sec⁻¹).

Additional mixed polymer film formation procedures:

Pyrrole-Luminol 1:10 Mixture^{26,27}

For the application of the polypyrrole to luminol, 1:10 mixture, selective membrane, the glassy carbon electrodes were immersed in a solution 17.3μ L of pyrrole, 0.01 M, combined with 0.443g of luminol, 0.1M (25 mL). The solution was degassed with nitrogen to remove the oxygen. The electropoloymerization was achieved using cyclic voltammetry, cycling between 0.0 V and 1.0 V (vs. Ag/AgCl, saturated KCl) for 5 cycles. The pyrrole-luminol coated electrodes were then rinsed with nanopure water and allowed to dry (15 min).

Pyrrole-Luminol 10:1 Mixture^{26,27}

For the application of the polypyrrole to luminol, 10:1 mixture, selective membrane, the glassy carbon electrodes were immersed in a solution 173.5 μ L of pyrrole, 0.1 M, combined with 0.0443 g of luminol, 0.01 M (25 mL). The solution was degassed with nitrogen to remove the oxygen. The electropoloymerization was achieved using cyclic voltammetry, cycling between 0.0 V and 1.0 V (vs. Ag/AgCl, saturated KCl) for 5 cycles. The pyrrole-luminol coated electrodes were then rinsed with nanopure water and allowed to dry (15 min).

Monomer		Molar Ratio [‡] or	Acefaminophen	Ascorbic Acid	Uric Acid	Ratio:	Ratio:	UA
System	Ref.	Condition [*]	(40 µM)	(40 µM) ≙15	(100 µM)	UA to Aceto	UA to AA	Sensor
L'UCHU	12,21		0.0 (±0.05): n=3	CL.0 (±0.05); n=3	0.003 (±0.00₁): n=3	0.0	0.0	
Phenol	12,20	Stirred	41.9 (±21.8); n=4	3.9 (±4.4); n=4	14.0 (±9.0); n=4	0.3341	3.5897	>
Aniline	25	 	0.4	0.2	0.0	0.0	0.0	
			(±0.2); n=4	(±0.1); n=4	n=4			
Aniline	25	Stirred	5.5	0.0	0.0	0.0	0.0	
Anilina. T	7576	10-1	(±6.8); n=3 ∩ ∩	n=3	n=3 0.0	00	00	
	07,07	10.1 <u>mix</u>	0.0 n=3	0.0 n=3	0.0 n=3	0.0	0.0	
Aniline-Luminol	25,26	50:50 _{mix}	0.0	0.0	0.0	0.0	0.0	
			0=5	n=5	n=5			
Aniline-Luminol	25,26	bes	22.8	2.2	1.8	1.4419	0.8182	
			(±2.2); n=2	(±0.3); n=2	(±0.1); n=2			
Luminol-Aniline	26,25	bes	65.8	12.9	7.0	0.1064	0.5426	
			(±88.0); n=2	(±17.9); n=2	(±9.7); n=2			
Pyrrole	27		25.7	20.5	1.3	0.0505	0.0634	
			(±2.5); n=4	(±3.9); n=4	(±0.8); n=4			
Pyrrole	27	Stirred	0.0	0.0	0.0	0.0	0.0	
			n=3	n=3	n=3			
Aniline-Pyrrole	27	10:1 _{seq}	0.0	25.1	0.0	0.0	0.0	
			n=4	(±8.3); n=4	n=4			
Aniline-Pyrrole	27	50:50seq	0.0	0.0	0.0	0.0	0.0	
			n=4	n=4	n=4			
Pyrrole-Luminol	27,26	$10:1_{mix}$	0.0	0.0	0.0	0.0	0.0	
			n=4	n=4	n=4			
Pyrrole-Luminol	27,26	$1:10_{mix}$	0.5	0.4	0.2	0.4	0.5	
	20.20		(±0.4); n=4	(±0.3); n=4	(±0.2); n=4	000000		
rummoi-rymoie	17,02	10:1seq	20.1 (+12 2): n=4	7.1 (+7.2): n=4	4.8 (+2 0): n=4	0.2388	10/010	
Pyrrole-Luminol	27,26	10:1 _{sea}	3.1	5.4	1.7	0.5484	0.3148	>
			(±3.3); n=4	(±3.8); n=4	(±3.7); n=4			
Luminol	26		172.9	119.0	162.3	0.9387	1.3639	
			(±40.5); n=0	0=u :(6:07∓)	0=u ;(c.12±)			
Luminol	26	Stirred	33.4 (±5.0); n=4	41.5 (±8.3); n=4	46.3 (±6.5); n=4	1.3862	1.1157	>
Luminol-Aniline	31	1:10	67.0	26.2	30.3	0.4522	1.1565	>
			(±5.0); n=6	(±13.4); n=6	(±15.7); n=6			
Luminol-Aniline	31	$1:10_{N\&G}$	104.4	23.6	22.5	0.2155	0.9534	
			(±22.7); n=2	(±3.5); n=2	(±23.0); n=2			

Table SM-1. Permeability Indices (PI)[†] for Interferents and Uric Acid at Electronolymerized Films on Glassy Carbon Electrodes (%)

9

			(±18.9); n=3	(±6.7); n=3	(±10.4); n=3	~~~~~		
ninol-Aniline	31	$10:1_{N\&G}$	58.3 (±6.6): n=5	28.9 (±9.1): n=5	35.7 (±6.4): n=5	0.6123	1.2353	
ninol-Pyrrole	26	$1:10_{mix}$	7.3 (±1.6): n=4	0.0	0.5 (±0.7): n=4	0.0685	NA	
ninol-Pyrrole	26,27	1:200 _{seq}	81.5 (±20 3): n=3	16.4 (±2.7) ⁻ n=3	16.7 (±4.1) ⁻ n=3	0.2049	1.0183	
role-Luminol	26,27	200:1 _{seq}	21.9	17.6	5.7	0.2603	0.3239	
minol-Phenol	26	1:10	101.9	0.0	32.6	0.3199	NA	
enol-Luminol	26,12,	800:1 _{seq}	(±19.3); n=5 1.3	0.2	(≠13.6); n=5 0.4	0.3077	2.0	
minol-Phenol	20 26,12,	1:800 _{seq}	(±0.5); n=3 1.0	(±0.05); n=3 0.1	(±0.1); n=3 0.1	0.1	1.0	
NafionIM	20 28		(±0.3); n=3	(±0.0 ₂); n=3	(±0.0 ₁); n=3	0.0425	NIA	
	2		±2 (±1.4); n=3	n=3	01 (±0.1); n=3	00+010		
Nafion	28	Stirred	9.0 (±1.2): n=3	1.2 (±0.2): n=3	0.5 (±0.1): n=3	0.0556	0.4167	
Nafion	28	CV	109.6	67.9	126.6	1.1551	1.8645	>
			(±44.1); n=4	(±46.2); n=4	(±83.0); n=4			
fion-Luminol	28	10:1	45.8	25.3	14.5	0.3166	0.5731	
1	20	10.1 CV	(±28.8); n=3	(±21.1); n=3	(±14.3); n=3	00000		
lonmul-Luminol	07	1:01	30.8 (±26.9): n=4	0.0 n=4	C./ (±11.4)	0.2058	NA	
fion-Luminol	26	10:1(CV-N ₃)	59.7	28.5	26.1	0.4372	0.9158	>
			(±27.0); n=3	(±29.4); n=3	(±25.6); n=3			
Fyramine	29		70.8	15.8	2.3	0.0325	0.1456	
	00		(±3.8); n=2	(±3.2); n=2	(±1.6); n=2			
1 yramme	00	Stirred	50.8 (±4.9): n=2	14.5 (±0.7): n=2	5.8 (±1.0): n=2	0.0009	0.2021	
Tyramine	29		0.06	0.03	0.01	0.1667	0.3333	
			(±0.07); n=3	(±0.03); n=3	(±0.01); n=3			
Tyramine	30	Stirred	0.1	0.029	0.01	0.1	0.5	
			(±0.1); n=3	(±0.02); n=3	(±0.01); n=3			
umne-Lummol	97,67	Seq	62.1	3.7	5.2	0.0837	1.4054	
			(±2.7); n=3	(±0.4); n=3	(±0.4); n=3			,
inol-Tyramine	26,29	Seq	88.7	16.6	24.7	0.2785	1.4880	>
			(±21.7); n=3	(±9.3); n=3	(±31.7); n=3			

Figure SM-7. Amperometric I-*t* curve for successive injections of common interferent species (40 μ M) and uric acid (100 μ M and/or 300 μ M) at a platinum electrode modified with L-B-L construction of UOx-doped OTMS xerogel and undoped OTMS xerogel with a (**a**) polyluminol-polyaniline (1:10) mixture or (**b**) aniline and 100% hydrothane polyurethane capping layers. The composite film with the aniline electropolymer layer is unable to distinguish and respond to uric acid while the PLUM:PANI film prevents interferent signal and promotes uric acid signal, with the exception of acetaminophen. Note: Glucose was tested at 100 μ M.

Figure SM-8. Calibration curves for successive 50μ M injections of uric acid at a platinum modified electrode with UOx-doped OTMS xerogel, undoped OTMS xerogel, (a) Nafion-Luminol, (b) luminol-aniline (1:10), (c) luminol-aniline (10:1) formed with no nucleation and growth and all capped with hydrothane polyurethane (n=3; standard deviation shown).