30,304 research outputs found
Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers
A setup is proposed to enhance tracking of very small particles, by using
optical tweezers embedded within a Sagnac interferometer. The achievable
signal-to-noise ratio is shown to be enhanced over that for a standard optical
tweezers setup. The enhancement factor increases asymptotically as the
interferometer visibility approaches 100%, but is capped at a maximum given by
the ratio of the trapping field intensity to the detector saturation threshold.
For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a
factor of 200, and the minimum trackable particle size is 2.4 times smaller
than without the interferometer
A VLSI single chip (255,223) Reed-Solomon encoder with interleaver
A single-chip implementation of a Reed-Solomon encoder with interleaving capability is described. The code used was adapted by the CCSDS (Consulative Committee on Space Data Systems). It forms the outer code of the NASA standard concatenated coding system which includes a convolutional inner code of rate 1/2 and constraint length 7. The architecture, leading to this single VLSI chip design, makes use of a bit-serial finite field multiplication algorithm due to E.R. Berlekamp
A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code
Modulation of CXCR4, CXCL12, and Tumor Cell Invasion Potential In Vitro by Phytochemicals.
CXCR4 is a chemokine receptor frequently overexpressed on primary tumor cells. Organs to which these cancers metastasize secrete CXCL12, the unique ligand for CXCR4, which stimulates invasion and metastasis to these sites. Similar to our previous work with the chemoprotective phytochemical, 3,3'-diindolylmethane (DIM), we show here that genistein also downregulates CXCR4 and CXCL12 and subsequently lowers the migratory and invasive potentials of breast and ovarian cancer cells. Moreover, genistein and DIM elicit a significantly greater cumulative effect in lowering CXCR4 and CXCL12 levels than either compound alone. Our data suggest a novel mechanism for the protective effects of phytochemicals against cancer progression and indicate that in combination, these compounds may prove even more efficacious
A quantum study of multi-bit phase coding for optical storage
We propose a scheme which encodes information in both the longitudinal and
spatial transverse phases of a continuous-wave optical beam. A split
detector-based interferometric scheme is then introduced to optimally detect
both encoded phase signals. In contrast to present-day optical storage devices,
our phase coding scheme has an information storage capacity which scales with
the power of the read-out optical beam. We analyse the maximum number of
encoding possibilities at the shot noise limit. In addition, we show that using
squeezed light, the shot noise limit can be overcome and the number of encoding
possibilities increased. We discuss a possible application of our phase coding
scheme for increasing the capacities of optical storage devices.Comment: 8 pages, 7 figures (Please email author for a PDF file if the
manuscript does not turn out properly
Quantum limited particle sensing in optical tweezers
Particle sensing in optical tweezers systems provides information on the
position, velocity and force of the specimen particles. The conventional
quadrant detection scheme is applied ubiquitously in optical tweezers
experiments to quantify these parameters. In this paper we show that quadrant
detection is non-optimal for particle sensing in optical tweezers and propose
an alternative optimal particle sensing scheme based on spatial homodyne
detection. A formalism for particle sensing in terms of transverse spatial
modes is developed and numerical simulations of the efficacy of both quadrant
and spatial homodyne detection are shown. We demonstrate that an order of
magnitude improvement in particle sensing sensitivity can be achieved using
spatial homodyne over quadrant detection.Comment: Submitted to Biophys
How Much Does Money Matter in a Direct Democracy?
The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org
A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation
A single chip VLSI Reed-Solomon decoder
A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip
Unitarity and the Hilbert space of quantum gravity
Under the premises that physics is unitary and black hole evaporation is
complete (no remnants, no topology change), there must exist a one-to-one
correspondence between states on future null and timelike infinity and on any
earlier spacelike Cauchy surface (e.g., slices preceding the formation of the
hole). We show that these requirements exclude a large set of semiclassical
spacetime configurations from the Hilbert space of quantum gravity. In
particular, the highest entropy configurations, which account for almost all of
the volume of semiclassical phase space, would not have quantum counterparts,
i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in
Class. Quant. Grav.
- …