Particle sensing in optical tweezers systems provides information on the
position, velocity and force of the specimen particles. The conventional
quadrant detection scheme is applied ubiquitously in optical tweezers
experiments to quantify these parameters. In this paper we show that quadrant
detection is non-optimal for particle sensing in optical tweezers and propose
an alternative optimal particle sensing scheme based on spatial homodyne
detection. A formalism for particle sensing in terms of transverse spatial
modes is developed and numerical simulations of the efficacy of both quadrant
and spatial homodyne detection are shown. We demonstrate that an order of
magnitude improvement in particle sensing sensitivity can be achieved using
spatial homodyne over quadrant detection.Comment: Submitted to Biophys