
7

IDA Progress Report 42-84 October-December 1985

N86-22791

A Single Chip VLSI Reed-Solomon Decoder
H. M. Shao, T. K. Truong, I. S. Hsu, and L. J. Deutsch

Communications Systems Research Section

I.S. Reed
University of Southern California

A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform
decoding technique used in a previous design is replaced by a time domain algorithm.
A new architecture that implements such an algorithm permits efficient pipeline pro-
cessing with minimum circuitry. A systolic array is also developed to perform erasure
corrections in the new design. A modified form of Euclid's algorithm is implemented
by a new architecture that maintains the throughput rate with less circuitry. Such
improvements result in both enhanced capability and a significant reduction in silicon
area, therefore making it possible to build a pipeline (31,15) RS decoder on a single
VLSI chip

I. Introduction
Recently Brent and Kung (Ref. 1) suggested a systolic

array architecture to compute the greatest common divisor
(gcd) of two polynomials. Based on this idea a VLSI design of
a pipeline Reed-Solomon decoder was developed (Ref. 2). The
syndrome computation of this decoder for a 4-bit (15,9) RS
code was implemented on a chip (Ref. 3).

In the design of the chip for the above-mentioned decoder,
three major problems arose:

(1) While the architecture for syndrome computation took
(N - 7) cells for an (TV, /) RS code, it required N identi-
cal cells to« implement the inverse transform in the
architecture suggested in Ref. 2. As a consequence
for a long code such as the (255,223) RS code, the
inverse transform circuit would need 255 cells and be
quite large.

(2) The basic cell of the systolic array needed to perform
a modified form of Euclid's algorithm occupied con-
siderable silicon area, approximately 60 times the size
of a syndrome computing cell. Since the decoding
algorithm in Ref. 2 required (N - /) of such cells, the
entire systolic array needed much more silicon area
than desired.

(3) Erasure corrections became necessary and were not
included in the original design. Hence the decoder
required several modifications of the original architec-
ture design in Ref. 2.

To reduce the large circuit area required by the inverse
transform operation it was decided to modify the original
transform decoding algorithm. Also after considering the need
for erasure correction, it was found that the decoding algo-
rithm given in Ref. 4 could accommodate both requirements.

73

https://ntrs.nasa.gov/search.jsp?R=19860013320 2020-03-20T15:04:32+00:00Z
CORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42841655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this algorithm the errata magnitudes are calculated in
the time domain and a Chien search is used to find the error
locations. The architecture of the new algorithm is designed
to operate, sequentially in a pipeline, thereby enabling the
circuit, size to grow with the error correcting capability (N- /)
instead of the code length N.

The systolic array designed originally for the modified
form of Euclid's algorithm could process polynomials con-
tinuously (Ref. 2). However, in real-time RS decoding, there is
a need to compute only one syndrome polynomial for each
received codeword. If one takes advantage of this by a better
utilization of multiplexing, the required pipeline throughput
rate can be maintained by the use of fewer basic cells.

In this article, an improved VLSI architecture over that in
Ref. 2 is developed utilizing the above observations. A systolic
array is also designed for the needed polynomial expansion
used in the erasure polynomial computation. These new modi-
fications result in both an enhanced capability and a signifi-
cant reduction in silicon area without any loss in the pipeline
throughput rate.

II. The Decoder Architecture
Let TV = 2m - 1 the length of the (N, /) RS code over

GF(lm) with design distance d. Suppose that t errors and
s erasures occur, and s + 2t < d - 1. The decoding procedure in
Ref. 4 is summarized as follows

Let X be an error location or an erasure location and
A = [Xl\Xl is an erasure location), X = [Xi\Xl is an error
location}. Let Yt be the corresponding errata magnitude and
r ~ (rO' ri> • • • < rN-i) be t^ie received vector.

Step 1 Compute the syndrome polynomial

s,z-k

where

k=l

N-l
*,nk

S±t

Step 2. Compute the erasure locator polynomial

A(Z) = (2)
A^.eA

from A.

Step 3. Multiply 5(Z) and A(Z) to obtain the Forney syn-
drome polynomial

r(Z) = s(z)A(Z) (3)

Step 4. Compute the errata evaluator polynomial A(Z)
and the error locator polynomial X(Z) from T(Z) = [A(Z)]/
X(Z)] by the modified Euclid's algorithm.

Step 5. Multiply A(Z) and X(Z) to get the errata locator
polynomial

P(Z) = A(Z)X(Z) (4)

Step 6. Perform Chien search on X(Z) to find the error
location set X.

i

Step 7. Compute the errata magnitudes

_
k

for 1 < k < s + t by evaluating A (Z) and P'(Z). Use sets X
and A to direct the additions of 7fc to the received vector r.

The pipeline architecture of the RS decoder is shown in
Fig. 1. The decoder computes the syndrome polynomial
5(Z) by the transform circuit given in Ref. 2. Th,e erasure
information A enters the decoder in the form of a binary
sequence.

The systolic array described in the next section expands
the factors of

A(Z) = Yl(Z-X i)

for

into the polynomial Polynomial multiplications are performed
with a circuit described in Ref. 5 A new architecture is
developed which implements the modified Euclid's algorithm
by operating on the product of 5(Z) and A(Z) The resulting
error locator polynomial X(Z) is then multiplied by A(Z),
thereby obtaining the errata locator polynomial P(Z)t

74



The derivative P'(Z) of P(Z) is obtained by dropping the
even terms of P(Z). The errata magnitudes Yk are calculated
then by a field inversion and a number of multiplications
Next the error locations are obtained in the form of a binary
sequence by the use of another polynomial evaluation circuit
which performs the Chien search on X(Z). This sequence of
error locations, together with the input erasure location
binary sequence, directs the addition of Yk to the received
message.

III. A VLSI Design for Expanding the Erasure
Locator Polynomial

It is reasonable to assume that the erasure location informa-
tion derived from outside the chip, possibly from a convolu-
tional decoder. Let it arrive serially in the form of 1 's and O's.
A simple circuit of the form shown in Fig. 2(a) first converts
this erasure data into a sequence of afc's and O's, where ak G A.

Given ctk G A, the computation of the erasure polynomial
demands the expansion of

A(Z)= fj

(6)

Note that for an arbitrary polynomial Q(Z) that

,k\ =C(Z)(Z-o*) = (7)

Such an operation involves polynomial shifts, scalar multi-
plications and additions Thus the multiplications of (Z - ak)
in Eq. (6) can be implemented by the systolic array given in
Fig. 2(b). Since it contains zeros as well as ock's, the input
stream is used to control the updating of the latches in each
basic cell. At the end of the arrivals of the erasure locations,
the coefficients of A(Z) are loaded from the latches into
registers and shifted out serially.

IV. A New Architecture to Perform the
Modified Euclidean Algorithm

A systolic array was designed in Ref. 2 to compute the
error locator polynomial by a modified Euclidean algorithm.
The array required 2? cells, twice the number of correctable
errors. It is capable of performing the modified Euclidean
algorithm continuously

In the modified Euclidean algorithm only one syndrome
polynomial is computed in the time interval of one code word.
As a consequence, for the original architecture in Ref 2,
a pipeline RS decoder is not as efficient as it might be. A
substantial portion of the systolic array is always idling This
fact makes possible a more efficient design with fewer cells
and no loss in the throughput rate.

For the (N, /) RS code, the length of the syndrome poly-
nomial is N - I. The maximum length of the resultant Forney
syndrome polynomial is also N - I. Imagine now that a single
cell is used recursively to perform the successive steps of the
modified Euclidean algorithm instead of pipelining data to the
next cell. Then it would take N -1 recursions to complete the
algorithm, where each recursion requires N - I symbol times.
Therefore, using a single cell recursively requires only a total
of (N - 7)2 symbol time to complete the modified form of
Euclidean algorithm. Since a syndrome polynomial needs to
arrive every N symbol times, only \(N - f)2/N\ cells are
needed to process successive syndrome polynomials at a full
pipeline throughput rate.

Figure 3 shows the new alternate architecture design. The
input multiplexer directs the syndrome polynomials to differ-
ent cells. Each processor cell is almost identical to the cell
presented in Ref. 2, except that it is used to process data
recursively.

The primary difference in the new cell structure from the
architecture of the previous cell (Ref. 2) is presented as
follows: Since division is avoided in the modified form of
Euclid's algorithm, a scalar factor appears at the output
Although such a scale factor, call it K, is irrelevant to the
problem of finding roots of the error locator polynomial
\(Z), it must be removed from the errata evaluator polynomial
A(Z). In order to effectively utilize the processor cell given
in Ref. 2, the factor K which appears at the output of each
cell is calculated independently of the cell computation This
is accomplished by using a multiplier, operating recursively,
to accumulate the product of all the nonzero leading coeffi-
cients of the divisor polynomials. An inverse computation
circuit and a multiplier after the demultiplexer is used to
remove the unwanted scalar K from KA (Z). This computa-
tional process is illustrated in Fig. 3

The architecture of the new basic cell is given in Fig 4.
Compared with the previous systolic array design (Ref 2),
the present scheme for multiplexing the recursive cell compu-
tations significantly reduces the number of cells and as a
consequence the number of circuits Table 1 shows that the
cell reduction is greater for high rate codes.

75



V. A Polynomial Evaluation Pipeline
Polynomials are evaluated not only in the Chien search

process, but also when the errata magnitudes are computed.
In RS decoding, one needs to evaluate

A(Z) = AZ1
(8)

1=0

for Z = ak and 0 < k < N - 1 given A t , Q < i < s + t - I Note
that Eq (8) has a form which is identical to the syndrome
computation Eq (1).

However, in Eq. (8) the polynomial is shorter than in
Eq. (1). Also since TV > s + t - 1, Eq. (8) is evaluated over a
wider range than Eq. (1) is computed. These two differences
make it inefficient to implement Eq. (8) in a manner similar to
that used for syndrome computations. A better method is to
evaluate Af(of)k sequentially for each k at cell;'. This is illus-
trated in Fig. 5. The polynomial coefficient At is multiplied by
a1' at the initialization of cell ;'. From then on a feedback loop
computes the quantities Af(of)k for k = 1, 2, 3, .. ., N -\.
The summation shown at the bottom of the figure is imple-
mented quite simply since all quantities are binary.

VI. Conclusion

An improved VLSI architecture of a pipeline Reed-Solomon
decoder is presented herein Compared with the previous
design in Ref 2, this architecture not only now corrects
erasures, it is simpler, more regular, smaller in chip area and
operates equally as fast. It is estimated that the polynomial
expansion circuit and the polynomial multiplication circuit
need approximately the same number of transistors as the
syndrome computing pipeline. On the other hand, each
polynomial evaluation circuit takes about half the number of
transistors. Finally, each cell in the modified form of Euclid's
algorithm circuit requires approximately the same chip area
as the syndrome circuit.

Based on a previous nMOS chip fabrication of the syn-
drome pipeline (Ref. 3) and the design of the basic cell of the
modified form of Euclid's algorithm (Ref. 6), it is estimated
that a (15,9) RS decoder chip would require about 29 thou-
sand transistors. A (31,15) RS decoder would require about
88 thousand transistors. Considering the presently existing
VLSI technology, a high throughput 5-bit (31,15) RS decoder
could be implemented readily on a single VLSI chip. Of course
such a chip would have a possible immediate application to
JTIDS (for Joint Tactical Information Distribution System
of DoD).

References

1. Brent, R. P., and Rung, H. T., "Systolic VLSI arrays for polynomial GCD computa-
tions," Dep. Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, Rep., 1982.

2. Shao, H. M., Truong, T.K., Deutsch, L. J., Yuen, J. H., and Reed, I. S., "A VLSI
Design of a Pipeline Reed-Solomon Decoder," IEEE Trans, on Computer, Vol. C-34,
No. 5, May 1985, pp. 393^03.

3. Shao, H. M., "A VLSI Syndrome Computing chip for Reed-Solomon Decoding," to
be published in TDA Progress Report 42-85, Jet Propulsion Laboratory, Pasadena,
Calif.

4. Reed, I. S., Truong, T. K. and Miller, R. L., "Decoding of B. C. H. and R. S codes
with errors and erasures using continued fractions," Electronic Letters, August 1979,
Vol 15, No. 17, pp. 542-544.

5. Peterson and Weldon, Error-Correcting Codes, 2nd Edition, the MIT Press, Cambridge,
pp.172-173,1972.

6. Hsu, I. S. and Shao, H M., "A VLSI chip for the implementation of the modified
Euclid's Algorithm," to be published in TDA Progress Report 42-85, Jet Propulsion
Laboratory, Pasadena, Calif.

76



Table 1. The comparison of the number of cells required in the
modified Euclid's algorithm computation

Multiplexing on
RS Code Full Systolic Array Recursive Calls

(15,9) 6 3

(31,15) 16 9

(255,223) 32 5

77



78



(o) ' . . . 0 1 1 0 1 0 _
. . . 0 a4 o3 0 a' 0

Li ' J

CELLs CELL 2 CELL]

Fig. 2. A systolic array to expand a polynomial

S(Z) M
U
X

•

•

ret 1 _

M
U
X

-i

H&) — " A(Z)

KMZ)

Fig. 3. The new architecture to perform the modified form of Euclid's algorithm where
„ = L(AM)2/NJ

79



POLYNOMIAL
ARITHMETIC
UNIT

POLYNOMIAL
ARITHMETIC
UNIT

Fig. 4. The structure of a recursive cell that performs the modified Euclid's algorithm

80



I CELICELL 1

Fig. 5. A polynomial evaluation pipeline circuit

81




