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It is well known that the Euclidean algorithm or #s equivalent, continued fractions,

can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS)

code. It is shown in this article that this algorithm can be used for both time and trans-

form domain decoding by replacing its initial conditions with the Forney syndromes and

the erasure locator polynomial. By this means both the errata locator polynomial and the

errata evaluator polynomial can be obtained with the Euclidean algorithm.

With these ideas, both time and transform domain Reed-Solomon decoders for cor-

recting errors and erasures are simphfied and compared in this article. As a consequence,

the architectures of Reed--Solomon decoders for correcting both errors and erasures can

be made more modular, regular, simple, and naturally suitable for VLSI implementation.

I. Introduction

The Euclidean algorithm for solving the key equation for

decoding Bose-Chaudhuri-Hocquenghem (BCH) and Goppa

type codes was first developed by Sugiyama etal. [1]. The

authors [2], [3] derived a fast decoding of Reed-Solomon

(RS) codes using the continued fraction, which is closely

related to the Euclidean algorithm. Brent and Kung [4] were

the first to suggest a systolic array architecture for computing

the greatest common divisor (GCD) of two polynomials.

Through the use of these ideas, a pipeline structure for a trans-

form domain decoder was developed to decode errors of RS

codes [5]. An important ingredient of this design is a modi-

fled Euclidean algorithm for computing the error locator

polynomial.

The computation of inverse field elements is completely

avoided in the above-mentioned modification of Euclid's

algorithm. Recently, the authors [6] proposed that a recursive

algorithm could be used to perform this modified Euclidean

algorithm. An important advantage of this new recursive algo-

rithm is that the entire systolic array needed to perform

Euclid's algorithm requires substantially less silicon area than

the pipeline version of the modified Euclidean algorithm given

in [5].

63

https://ntrs.nasa.gov/search.jsp?R=19880009399 2020-03-20T08:21:52+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42833177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Forney [13] defined an errata locator polynomial using

what are now called Forney syndromes to correct both errors

and erasures. Blahut [7] showed that the errata locator poly-

nomial can be computed directly by initializing Berlekamp's

algorithm with the erasure locator polynomial.

Recently Eastman [8] suggested that the errata evaluator

polynomial can be computed directly by initializing Berle-

kamp's algorithm with the Forney syndrome polynomial. This

new, simplified decoding procedure is proved in [9]. By this

technique, it is possible to compute the errata locator polyno-
mial and the errata evaluator polynomial simultaneously from

the Euclidean algorithm. This new RS decoder uses both the

erasure locator polynomial and the Forney syndrome polyno-

mial as initial conditions for the Euclidean algorithm.

It is shown and proved in [9] that the modified Euclidean

algorithm mentioned above can be used to solve the Berle-

kamp-Massey key equation for the errata locator polynomial

and the errata evaluator polynomial directly and simultane-

ously. By this means a new, simplified pipeline architecture
for both the time and transform domain decoders can be

developed for correcting both errors and erasures of RS codes.

Such a decoding technique can be faster and simpler than

previous methods [15], [10].

In this article, it is found that the VLSI implementation of

the transform domain decoder is simpler than that of the time
domain decoder. However, for a long RS code (10 bits or

larger), due to the large size of the inverse transform unit

needed in the transform decoder, the VLSI area needed to

implement the transform domain decoder can be substantially
larger than that needed for the time domain decoder. For

moderately long codes, such as the 8-bit (255,223) RS code

used in the concatenated coding system for NASA's Voyager
mission [11 ], the transform domain decoder is still simpler
than the time domain decoder.

The above-mentioned NASA coding system is called the

"baseline" system. It uses a (7, 1/2) convolutional code as

its inner code and an 8-bit (255,223) RS code as its outer

code. It is shown [12] that this system achieves a bit-error

rate (BER) of 10 -6 at a bit signal-to-noise ratio (SNR) of
2.53 dB.

As mentioned above, the time domain decoder is more

efficient in area than the transform domain decoder for very

long RS codes. One such example is the long, 10 bits/symbol

(1023, 959) RS code presently being considered for very deep

space probes. If this code is concatenated with a (15, 1/5)
convolutional code, it achieves a BER of 10-6 at an SNR of

0.5 dB [12]. Evidently the new NASA concatenated coding

system provides a 2 dB improvement over the present baseline

system. It is for this reason and many other applications that

it is important to develop an efficient, VLSI implementable,
time domain RS decoder.

II. The Time Domain Decoder for RS Codes

An algorithm is developed in [15] for time domain decod-

ing of RS codes to correct both errors and erasures through
the use of continued fractions or their equivalent, Euclid's

algorithm. This algorithm is a modification of the Berlekamp-

Forney method [13], [14]. In this algorithm, the continued

fraction algorithm is used to find the error locator polyno-

mial from the remainder of the formal power series for the

Forney syndrome. The disadvantage of this algorithm is that

after the error locator polynomial is obtained by continued

fractions, two polynomial multiplications are needed to com-

pute the errata locator polynomial and the errata evaluator

polynomial from the known error locator polynomial.

In this section, the above-mentioned algorithm is modified
to correct both errors and erasures in the time domain decod-

ing of RS codes by the use of the Euclidean algorithm. In this

new algorithm, the Euclidean algorithm is used to solve the

Berlekamp-Forney key equation for the errata locator polyno-

mial and the errata evaluator polynomial directly and simulta-
neously. The advantage of this algorithm over previous methods

[15] is that separate computation of the errata locator poly-

nomial and the errata evaluator polynomial, which is usually

needed [15], can be avoided. This new decoding algorithm

is highly suitable for both VLSI and software implementation.

First, let GF(2 m) be a finite field of 2 m elements. Also, let

N -- 2 rn - 1 be the length of the (N,1) RS code over GF(2 m )

with minimum distance d, where I =N- (d- 1) denotes the

number of m-bit message symbols and d - 1 denotes the num-

ber of parity symbols such that d - 1 is either an even or an
odd integer. The following five vectors are defined as:

c = (%,c 1 ..... CN_l) , code vector

r = (?'o, F1 ..... FAr_ 1 ), received vector

e = (eo, eI .... , eN_l) , error vector

u = (Uo, u1 ..... UN_I) , erasure vector

fi = (fro, ffl ..... tSN_l), errata vector

These vectors are related by _ = e + u and r = c + u + e.

Suppose that t errors and v erasures occur in the received

vector r, and assume that v + 2t _<d - 1. Next let a be a primi-

tive element in GF(2 m ). Then 3' = a i is also a primitive element

in GF(2m), where (i,N) = 1.
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To minimize the complexity of an RS encoder it is desir-
able that the generator polynomial be symmetric. If _¢is a root

of the code's generator polynomial, it is shown [16] that the

generator polynomial g(x) is symmetric if and only if

b+(d-2) d-I

g(x) -- I] (x-_') -- _ gy (2)
i=b i=O

where go = ga-1 = 1 and b satisfies the equality 2b + d - 2 =
2 m - 1. The syndromes of the code are given by

N-1

S(b-1)+k = Z Ui 7i(b-l+k) =

i=0

v+ t

= Z Y'X'(b-1)+k] ]
]=1

N-1

(ui + ei) "ri(t'-l+k )
i=0

for 1 _<k_<d-1 (2)

where X i is either the ]th erasure or error location, and Y/is
either the ]th erasure or the error magnitude. Define the set

A = {XilX i is an erasure location) and X = {XilX i is an error
location). Define the syndrome polynomial

d-1

S(X) = E S(b-n+k xk-1 (3a)
k=l

Then it is not difficult to show (see [14] ) that

d-I v+ t y.xt?
LI

S(x) = Z S(b-x,+k xk-1 = Z (1 X.x)
k=l ]=1

v+t y.X.x b+a-1

-Z 11
(1 -Xix)

]= 1

(3b)

Following [14], we define four different polynomials as
follows:

The erasure locator:

V

A(x)= FI (1-xx) --E (1-x,x)=E (-1);
xleA 1=I 1=o

(4a)

where A o = 1.

The error locator:

X(x) = H (I-X.x)
X.eh

/

t t

= _ (1-X/x) = ___ (-1)/Xix/
]=I j=O

(4b)

where Xo = 1.

The errata locator:

V+t v+t

r(x) = A(x)X(x) = H (2 -X.x) = Z (-l)/5'x!
j=l /=0

(4c)

where 7"0 = I.

The errata evaluator:

v+t

(4d)

In terms of the polynomials defined above, Eq. (3b)becomes

v+t

(5)

From Eq. (5), one obtains the congruence relation,

S(x)r(x) - A (x) mod x d-1 (6a)

It is shown [9] that Eq. (6a) can be solved to yield

A(x) modx a-I (6b)s(x) =- X(x)A(x)

It is well known, e.g., see [15], that the maximum num-
ber of errors in an RS code which can be corrected is

I_(d - 1- v)/2_l where [x_J denotes the greatest integer less

than or equal to x, i.e., the principal part ofx. We now define

the Forney syndrome polynomial.

Definition 1: The Forney syndrome polynomial is defined

by

T(x) = S(x)A(x) rood x a-I (7)
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By Eq. (7), the key in Eq. (6b) for X(x) and A (x) is:

T(x) A (x) - a-1
- X(x---)moo x

where

deg (X(x)} _< [_(d-1-v)/2]

and

deg {,4 (x)} _< t_(d + v - 3)/23

(8)

It is shown in the following theorem that the errata evalu-

ator polynomial A (x) and the errata locator polynomial r(x)

can be obtained simultaneously and simply from knowing

T(x) in Eq. (7) and the new key equation in Eq. (8), which
takes into account both errors and erasures.

Theorem 1: Let T(x) in Eq. (7) be the Forney syndrome

polynomial of a t-error and v-erasure correcting RS code under
the condition v + 2t _< d - 1 where d - 1 is either an even or

an odd integer. Consider the two polynomials M(x) = x a-1
and T(x) = S(x) A(x) mud x ct-1 . Then the Euclidean algo-

rithm for polynomials on GF(2 m ) can be used to develop two

finite sequences Rs(x ) and rs(x) from the following two recur-
sive formulas:

and

rs(x) = (-qs-, (x)) r_l (x) + rs_2 (x) (9a)

Rs(X) = Rs_ 2 (x) - Cls_1 (x) Rs_ 1 (X) (9b)

for (s = 1,2 .... ), where the initial conditions are ro(X ) =

A(x), r_ 1 (x)= 0, R_ 1 (x) = M(x), and Ro(x) = T(x). Here

qs-1 (x) is obtained as the principal part of Rs_ 2 (x)/Rs_ 1 (x).

The recursion in Eq. (9) for Rs(x ) and rs(x ) terminates when

deg {Rs(x)} _<v + w- 1 for the first time for some value s = s'.
Let

G,(x)
A(x) - A (lOa)

q,(x)
T(x)- A (lOb)

and

Also in Eq. (10), A = rs,(0 ) is a field element in GF(2 m )

which is chosen so that r o = 1. Then A (x) and r(x) in Eq. (10)

are the unique solutions of

(10c)A (x) - T(x) r(x) mud x a-1

where both the inequalities, deg {r(x)} _< L(d + v - 1)/23 and
deg {A (x)} _< L(d + v - 3)/2_1, are satisfied.

Proof: Theorem 1 is a proof [9] that the idea in [8] is
correct.

The roots of r(x) are the inverse locations of the t errors

and v erasures. These roots are most efficiently found by the

Chien search procedure. By Eq. (4d) it is readily shown that
the errata values are

Yk = (xb_ 1 Tt X; 1 ) forl<_k<_v+t (11)

where r'(X_ 1) is the derivative with respect to x of r(x),

evaluated at x = X_ 1 .

The overall time domain decoding of RS codes for correct-

ing errors and erasures using the Euclidean algorithm is sum-
marized in the following steps:

(1) Compute the transform of the received m-tuple vector

over GF(2 m ) from Eq. (2). Next, calculate the erasure

locator polynomial A(x) from Eq. (4a) and define

deg (A(x)) = v.

(2) Compute the Forney syndrome polynomial from T(x)

in Eq. (7).

(3) Determine the errata locator polynomial fix) and

errata evaluator polynomial A (x), where 0 _< v <

d - 1, by applying the Euclidean algorithm to x a-I

and T(x) as given by Eq. (7). The initial values of the

Euclidean algorithm are ro(X ) = A(x), r_1 (x) = 0,

R_l(x)=x d-l, and Ro(x)=T(x ). The recursion in

Eq. (9) for Rs(x ) and rs(x ) terminates when deg
(Rs(x)} <<-L(d + v - 3)/23 for the first time for some

value s = s'. Finally, compute fix) and A(x) from

Eq.(10). For v = d - 1, set rOe) = A(x) and A(x) =

T(x).

(4) Compute the errata values from Eq. (11).

To illustrate the time domain decoding procedure for

correcting errors and erasures, an elementary example of an

RS code over GF(2 4) is now presented. The representation of

the field GF(2 4) generated by the primitive irreducible poly-

nomial g(x) =x 4 +x + 1 is given in Appendix A.

Example 1 : Consider a (15, 9) RS code over GF(2 4) with

minimum distance d = 7. In this code, v erasures and t errors
under the condition 2t + v _< d - 1 can be corrected. In order
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to simplifythisexample, let "t = a and b = 1. Thus, the genera-

tor polynomial of such a (15, 9) RS code is defined by

6

g(x) = ]-I (x-ai) = x6 +'_l°xS +'_14x4
t=1

+ Ot4X3 + Ot6X2 + ot9 X + ot6

The syndromes S_ for r are

14

Sk = E rnotnk = ot7(ot3)k +t_2(tyT)k +otll(otlO)k

n=O

for 1 _<k_<6

Assume the message symbols are

](X) = OtlOxI4 +OtI2xI3 +_8X12 +otSxll +Ot6xIO

+ OtI4x9 + OtI3x8 +allx7 + Ot9X6

The encoded code word, which is a multiple ofg(x), is

C(X) = OtlOx14 +0t12X13 + Ot8XI2 +OtSXI1 +ot6X 10

+ ¢v14X9 + Otl3x8 + Otllx7 + Ot9X6 +X 5

+otx 4 +ot2x3 +ot6x2 +otl2x +ot8

Written as a vector, the code word is

C = (ot 10, ot 12, ot8, ot 5, ot6, ot 14, ot 13, ot 11, ot9, or0, iv,

0/2,ot6,otl2,0_ 8)

Assume the erasure vector is

u = (O,O,O,O,O,O,O, ot2,0, O,O,O,O,O,O)

and the error vector is

e = (O,O,O,O, otll,o,o,o,o,o,o, otT,0, O,O)

(12)

(13)

Then the errata vector is

= u+e = (O,O,O,O,ot11,0,O,ot2,0,O,O,otT,0,O,O)

(14)

Assume the received vector is

r = C+U = (otlO,otl2,ot8,ot 5,ot,Otl4,otl3,ot 9,

Or9 , otO, ot, 0_12, ot6, ot 12, ¢_'s ) (15)

This yields S I =ot0 $2 = otl3, $3 = otl4, $4 = otll, S5 =or,

and S6 = 0. Thus, the syndrome polynomial is S(x) = ot° _
otl3x + otl4x2 +otllx3 +OtX 4 +Ox s

The erasure locator polynomial is A(x) = (1 + otTx). In this

example, the maximum erasure correcting capability is

L(d - 1 - v)/23 = k(7 - 1 - 1)/23 = 2

By Eq. (7), one obtains the Forney syndrome polynomial as

T(x)=A(x)S(x) =(1 + otTx) (1 +ot13x + ot14x 2 +otHx 3

+otx 4 +0x5) modx 6

(0X 6 + ot8X $ + ot9X 4 + otX 3 + otl2x2

+ otSx + a °)roodX 6

= ot8X 5 + ot9X4 + otX 3 + OtI2x 2 + ot5X + ot 0

(16)

In Eq. (16), the coefficients of T(x), To = oto, Tx = ors, 7,2 =
ot12 , T3 = or, T4 = ot9, and T5 = a 8 are the Forney syndromes.

The Euclidean algorithm is applied next to polynomial

x a-1 and T(x) in Eq. (16). By this means, polynomials r(x)

and A (x) are determined next by use of the Euclidean algo-

rithm. This is accomplished by the recursive Eqs. (9a) and

(9b) illustrated in Table 1, where initially R_x (x) = x d-1 =

x 6 and Ro(x ) = otSx s + ot9X 4 + OtX 3 + 0t12X2 + 0_Sx + 1.

From Table 1, one observes that deg {Rs(x)) = deg (R 2 (x)) =
2 <<.L(d + v - 3)/21 = 2. Thus, the computation terminates
at s' = 2, and

R2(x ) = otTx2 +otx+ot 2 (17a)

and

T2(X) = Ot7X 3 +OtlaX 2 +ot4X +or 2 (17b)
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By Eqs. (10a) and (10b), one has

T(x) =__1 72(x ) = otSx3+anx2+a2x+l
ot 2

(18)

and

1

A(x) = _- R2(x ) = aSx 2 +514x+ 1
(19)

By using Chien's search, the roots of r(x) constitute the set

{a -7, ot-3, a-l°). The derivative with respect to x of 7(x) in
Eq. (18) is 7'(x) = aSx 2 + _2. Thus, the errata values are

AX_-1 a(_ -7) as(5-_)2 +_4(5-7)+ 1
Y1 - - - = 52

7'(X -1) 7'(r¢ -7 ) 0_5 (or-7) 2 +0l 2

AX; 1 0t5(0t-3) + 0_14(0t-3) + 1 57

7,(x2l ) _s(_-3)2 +_

and

XX31 0_5 (0_-1°) 2 + 0_14(_-10) + 1
I3 - - = 511

T'(x;l) 0t5 (tv-XO)2 + _2

III. The Transform Decoder for RS Codes

The transform decoder of Gore and Mandelbaum [17],
[18] was developed further in [10] to correct both errors and

erasures. This decoding procedure was based on the algorithm

originally invented by Forney [13] (also see [10]). By the
above-mentioned Euclidean algorithm, the transform domain

decoding procedure in [10] can be simplified further.

By the same procedure used in the time domain decoder,

one can obtain the errata locator polynomial given in Eq. (4c).
Hence,

7(X71) = 1 + (-1)1"1(X/-1) + (-1)272 (X/-1)2

+... + (-1) v+' %+, (x71 y+' = o

for 1 < i _< v + t (20)

Multiplying Eq. (20) by YiX/(b-1)+k yields

FiX fb-1)+ k - T1 r.s. (b-1)+k-1

_+l riX_b-O+k-(v+') = 0+... + (-1) 7v+ t

(21)

Summing Eq. (21) over i for 1 < i < v + t produces

v+t v+t

E r, _71F_,
1=1 1=1

v+t
v+t+... +(-1) =o

From Eq. (22), one has

s(b_,+ _ - 71s(b_l)+__,

+... + (-1) v+t 7t+vS(b_l)+k_(v+t) =0

(22)

(23)

Hence, in general,

e( b-1)+ k - "1"1Ecb -l )+k-I

+. • • + (-1) t+v 7t+vE(b_l)+k_(v+t ) = 0

for k _ d (24)

are the recursive equations for Ei, the transforms of the errata

pattern, where initially Eb = Sb ,Eb+ 1 = Sb+ 1 ..... Eb+d_ 2 are
known from the prior syndrome calculation.

From Eq. (24), one obtains the rest of the transform of u,
i.e., the S_ for 0 < £ _<N - 1'. The amplitude fi vector is found

by taking the inverse transform over GF(2 m) of S_, 0 < £ <
N - 1. Finally, the original m-tuple code vector can be obtained
by subtracting fi from the received vector r.

Let us now recapitulate the above transform decoding algo-

rithm of RS codes for correcting both errors and erasures,

using transforms over GF(2 m ) and the Euclidean algorithm.
This procedure is composed of the following five steps:

(1) Use step 1 in the time domain decoder.

(2) Use step 2 in the time domain decoder.

(3) Use step 3 in the time domain decoder.

(4) Compute the rest of the transform of the errata vector

by the use of Eq. (24).

(5) Invert the transform to recover the errata vector using

the fact that SO = Su . Then obtain the corrected code
vector.
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To illustrate the transform domain decoder for correcting
errors with erasures, the data for the (15, 9) RS code over

GF(2 4) used in Example 1 is again used.

Example2: Consider the (15,9) RS code over GF(2 4)

with d = 7. For this code, the erasure, error, errata, and

received vectors are given by Eqs. (12), (13), (14), and (15),

respectively. By Eq. (18), the errata locator polynomial is

r(x) = ro + rlx + r2x2 +tax 3 = 1 + Ol2 X + olll x2 + Ot5 X3

where ro = 1, r1 = a 2 , r2 = ot 11 , and r3 = a s .

By Eq. (23), the rest of the transform of the errata vector is

S k = ol2Sk_l+olllSk_2+ol5Sk_3 forT_15

(25)

That is, S7 = a 13, S s = t_13, S9 = off, Slo = ot3 , Sll = tv s ,

$12 = t_13, $1a = _ s, $1a = ct s, and SO = 1.

The inverse transform ofS k is

15-1

n=O

for 0_<k_< 14

The result is fi = (0, 0, 0, 0, al 1,0, O, t_2 , 0, 0, 0, t_7 , 0, 0, 0).

The corrected code is thus

c = r-fi = (otl°,oL12,0t8_ot5,0_,a'14, 0/13,0t9,0t9,_0,Ot,

O_12,_6,0t12,0t 8)

- (0, 0, 0, 0, all, 0, 0, Or2,0, 0, 0, Or7,0, 0, 0)

= (otlO 0t12,0t8 0t5 0/6,0_14,0t13 o/ll,t_9_O/0,(_,

O/2,tv6,0tl2,0t 8)

IV. A Comparison of VLSI Architecture of
the Transform Decoder and the Time
Domain Decoder

The block diagram of a (255,223) RS time domain decoder

is depicted in Fig. 1. Figure 2 shows the block diagram of a

(255,223) RS transform domain decoder. Each block diagram

can be separated into two parts, indicated by broken lines, as

shown in both Figs. 1 and 2. The first part, labeled as 'T' in

both block diagrams, has similar VLSI architecture. The major

functional units in this part are (1) the syndrome computa-
tion unit; (2) the power calculation unit; (3) the power expan-

sion unit; (4) the polynomial expansion unit; and (5) the

l(d + v - 3)/2J generator. Also included in this part are some

delay registers. The lengths of the delay registers may not be

equal in these two decoder architectures, but since they con-

tain only replicated register cells, they can be considered
identical in architecture.

Figure 3 shows the block diagram of the syndrome compu-

tation unit. This unit accepts the received messages and com-

putes their syndromes. There are 32 syndrome subcells in a

(255,223) RS decoder. Each subceU depicted in Fig. 3 per-

forms the operation as S i _ (S i + rioti), where "_-" denotes

the operation "is replaced by." The Berlekamp multiplier is

used in this syndrome unit due to its simplicity in VLSI

design [19]. The computed syndrome polynomial is labeled

as S(x) in both Figs. 1 and 2. In the time domain and trans-
form domain decoders, the coefficients of S(x) are fed in

parallel to the polynomial expansion unit to compute the
Forney syndromes.

The power calculation unit converts the received 1 's and O's

into a sequence of ak's and O's, where a is a primitive element
of the finite field over which the RS code is defined. These

received l's and O's indicate the occurrence or nonoccurrence,

respectively, of an erasure at a specific location. Figure 4
shows the block diagram of the power calculation unit. Since

the maximum erasure correcting capability of a (255,223) RS

decoder is 32, only 32 symbol latches are needed to store the
locations of all the correctable erasures.

A detection circuit for detecting the occurrence of erasures

is included in the power calculation unit. If an erasure occurs

at the kth location, its corresponding symbol c_k is calculated
and latched. This ak's sequence is fed to the polynomial

expansion circuit, to the power expansion unit, and to the
I(d + v - 3)/2J generator.

The power expansion unit converts the a k's sequence into

an erasure locator polynomial A(x) which has ak's as its

roots. Figure 5 depicts the block diagram of this unit. The

erasure locator polynomial A(x) is fed to the modified GCD
unit as one of the initial conditions.

A generator is used to compute [_(d + v - 3)/21. This is

shown in both Figs. 1 and 2. The output of this generator is

sent to the modified GCD unit and used as a stop indicator for
Euclid's algorithm

Figure 6 presents a block diagram of the polynomial expan-

sion circuit. The Forney syndromes for either the time domain
decoder or the transform decoder are calculated in this unit.
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Figure 7 depicts the block diagram of the modified GCD

unit. As described previously in [6], a multiplexing scheme

can be applied to the modified GCD unit to reduce the num-

ber of cells needed. The polynomial A(x) together with the

Forney syndrome polynomial T(x) are the two inputs to the

modified GCD unit. The output of the modified GCD unit is

the errata locator polynomial r(x) and the errata evaluator

polynomial A (x). The error correcting capability of the code

is computed by 1(32 - v)/2].

The differing functional units of the time and transform
domain decoders are shown in the second half of Figs. 1 and 2

and are labeled as "II." One output of the modified GCD unit

of the time domain decoder, the errata locator polynomial

r(x), is fed to a Chien search unit and to another unit for com-

puting [x b-I r'(x)] -1 = [x 111r'(x)] -1, where b = 112 in this

design. The other output of the modified GCD unit of the time
domain decoder, the errata evaluator polynomial A(x), is fed

to the polynomial evaluation unit to perform the evaluation of

A (x). Figure 8 shows the block diagram of the polynomial
evaluation unit.

The [x 111r'(x)] -1 unit performs the calculation of one part

of the errata magnitude [6]. Figure 9 depicts the block dia-

gram of this unit. The product of the outputs of the polyno-

mial evaluation unit and the [xlllr'(x)]-1 unit forms *he

errata magnitude.

In the time domain decoder, the Chien search unit is used

to search for the error and erasure locations; for more details,

see [6]. The architecture of the Chien search unit is similar to

that of the polynomial evaluation unit, except there is a zero
detector at the end.

On the other hand, for the transform domain decoder

design, the output from the modified GCD unit is the errata

locator polynomial r(x). This output is fed to the transform

error pattern unit, along with the syndromes from the syn-

drome computation unit, to calculate the extended syndromes.
A new architecture for the transform of the error-pattern unit

is developed in Appendix A. The realization of this idea is

shown in the block diagram of the transform of the error-

pattern unit, given in Fig. 10.

The computation of extended syndromes, together with the

original syndromes, is sent to the inverse transform unit to
obtain the estimated error oatterns. Figure 11 shows the block

diagram of the inverse transform error-pattern unit. It is easy
to see that the architecture for the inverse transform unit is

similar to that of the syndrome computation unit except that
255 subcells are needed in the inverse transform unit while the

syndrome computation unit needs 32 subcells.

Clearly, the architecture of the transform domain decoder

tesign is simpler than that of the time domain decoder design.
This is because the transform 'domain decoder design needs

only two regular function blocks in part II of Fig. 2. However,

the time domain decoder requires three function blocks for

the implementation in part II of Fig. 1.

Furthermore, the inverse-transform unit in the transform

domain design contains 255 similar ceils in the (255,223) RS

decoder. It is estimated that these 255 cells occupy only a
moderate amount of silicon area, and that their geometric

arrangement can be regular and simple. Therefore, substantial

time for the design and test of such a VLSI chip can be saved.

However, the advantage of the transform domain decoder is

valid only for moderately short length RS codes. If long length

RS codes are used to enhance the system's performance [12],
the transform domain decoder needs a large inverse transform

block. This might cause a problem in the VLSI implementa-

tion. In general, if a GF(2 m ) field is used to define an RS

code, an inverse transform block composed of 2 m - 1 cells is
needed. Hence, the number of cells needed in an inverse trans-

form block increases exponentially with the integer m. How-
ever, the number of transistors needed in the time domain

decoder goes up only linearly as the integer m increases.

Therefore, for long length codes, the time domain decoder

is the more appealing approach. Although the computation

of the time domain decoder is more complex than that of the

transform domain decoder, for long RS codes the number of
transistors needed in a time domain decoder is substantially
less than that in a transform domain decoder.
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Appendix A

New Architecture for the Transform of the Error Pattern Unit

In this appendix, a VLSI architecture is developed to com-

pute the transform of the error pattern. Recently, Johnson

et al. [20] proposed a systolic array for computing a linear

convolution. Using a technique similar to that suggested by
Johnson et al., the transform of the error pattern in Eq. (23)

or Eq. (24) can be implemented in a systolic array. The advan-

tage of this method over the previous method in Fig. 15 of [5]

is that the long delay needed in the large XOR tree used for

summing all the terms in Eq. (23) is eliminated. Also, the zero

detectors needed in the previous design [5] are not required in
this new architecture.

To illustrate this new architecture, the data in Example 2

for a (15, 9) RS code are used here as an example. The recur-

sive equation to compute the remainder of the transform of

the error pattern is given in Eq. (25). The new design for
computing Eq. (25) is shown in Fig. A-1. In this figure, the

function of each cell can be described by a register transfer

relation of the type R i *- Ri+ x + Sg t_i. The input data are
sent to all the cells simultaneously.

To understand the operation of this circuit, assume initially

that all registers R i for 1 _< i _< 3 are set to zero. The control

signal C is high for 6 symbol clocks to allow data S l ,S2 .....
S6 to be fed into the circuit. The input data are also sent to

the output node. At the same time, the complement signal t_

of signal C is low to prevent the data stored in register R 1
from being sent to the output node. Note that one "clock

time" for one Galois field symbol equals 4 circuit clock times.

At the seventh symbol clock time the control signal C is
switched to low or zero so that C = 1. Therefore, the data

stored in register R 1, which equals S7 at that moment, is sent

to the output node and fed back to all basic cells. This pro-
cess continues until the rest of the transform of the error

pattern, i.e., $7, S s ..... Sis, is obtained. The detailed opera-
tion of this circuit is described in Table A-2.
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Table A-1. Representations of the elements of GF(2 4) generated by a 4 + a + 1 = 0

3 2 aO

0a 0 0 0 1

1 0 0 1 0

2
a 0 1 0 0

3
a 1 0 0 0

4a 0 0 1 1

5a 0 1 1 0

6a 1 1 0 0

7a 1 0 1 1

8a 0 1 0 1

9 1 0 1 0

lO
c_ 0 1 1 1

11a 1 1 1 0

12 1 1 1 1

13
a 1 1 0 1

14
a 1 0 0 1

Table A-2. The fifteen steps of the transform of the error pattern algorithm

Symbol

clock

time

R 1 R 2 R 3

aSSl alls I a2S1

a5S2 ass1 + alls2 alls1 + a2S2

a5S3 a5S2 + a11S3 a2S3 + alls2 + a5Sl = S 4

_5S 4 alls4 + a5S3 a2S4 + _11S3 + ass 2 = S 5

15 aSs14 a 1 IS14 + a5S13 _2S14+a 1 +_5S12 = S OIS13 = $15
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