42 research outputs found

    Lasers for LISA: Overview and phase characteristics

    Get PDF
    We have investigated two alternative laser systems for the Laser Interferometer Space Antenna (LISA). One consisted of the laser of LISA's technology precursor LISA Pathfinder and a fiber amplifier originally designed for a laser communication terminal onboard TerraSar-X. The other consisted of a commercial fiber distributed feedback (DFB) laser seeding a fiber amplifier. We have shown that the TerraSar-X amplifier can emit more than 1W without the onset of stimulated Brillouin scattering as required by LISA. We have measured power noise and frequency noise of the LISA Pathfinder laser (LPL) and the fiber laser. The fiber laser shows comparable or even lower power noise than the LPL. LISA will use electro-optical modulators (EOMs) between seed laser and amplifier for clock noise comparison between spacecraft. This scheme requires that the excess noise added by the amplifiers be negligible. We have investigated the phase characteristics of two fiber amplifiers emitting 1 W and found them to be compatible with the LISA requirement on amplifier differential phase noise.DLR/50 OQ 0501DLR/50 OQ 060

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments

    Design and construction of a telescope simulator for LISA optical bench testing

    Get PDF
    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator

    Optical bench development for LISA

    Get PDF
    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    Micrometeoroid Events in LISA Pathfinder

    Get PDF
    The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained using a novel technique: direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory that operated near the first Sun-Earth Lagrange point from early 2016 through Summer of 2017. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum (related to the particle's mass and velocity), direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hours of Pathfinder data. We report a total of 54 candidates with momenta ranging from 0.2 μNs\,\mu\textrm{Ns} to 230 μNs\,\mu\textrm{Ns}. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system including those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type comets, and Asteroids. We find that our measured population is consistent with a population dominated by Jupiter-family comets with some evidence for a smaller contribution from Hailey-type comets. This is in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap

    The Gravitational Universe

    No full text
    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions
    corecore