2,446 research outputs found
Analyzing the Fierz Rearrangement Freedom for Local Chiral Two-Nucleon Potentials
Chiral effective field theory is a framework to derive systematic nuclear
interactions. It is based on the symmetries of quantum chromodynamics and
includes long-range pion physics explicitly, while shorter-range physics is
expanded in a general operator basis. The number of low-energy couplings at a
particular order in the expansion can be reduced by exploiting the fact that
nucleons are fermions and therefore obey the Pauli exclusion principle. The
antisymmetry permits the selection of a subset of the allowed contact operators
at a given order. When local regulators are used for these short-range
interactions, however, this "Fierz rearrangement freedom" is violated. In this
paper, we investigate the impact of this violation at leading order (LO) in the
chiral expansion. We construct LO and next-to-leading order (NLO) potentials
for all possible LO-operator pairs and study their reproduction of phase
shifts, the He ground-state energy, and the neutron-matter energy at
different densities. We demonstrate that the Fierz rearrangement freedom is
partially restored at NLO where subleading contact interactions enter. We also
discuss implications for local chiral three-nucleon interactions.Comment: 11 pages, 5 figure
Large-cutoff behavior of local chiral effective field theory interactions
Interactions from chiral effective field theory have been successfully
employed in a broad range of \textit{ab initio} calculations of nuclei and
nuclear matter, but it has been observed that most results of few- and
many-body calculations experience a substantial residual regulator and cutoff
dependence. In this work, we investigate the behavior of local chiral
potentials at leading order under variation of the cutoff scale for different
local regulators. When varying the cutoff, we require that the resulting
interaction produces no spurious bound states in the deuteron channel. We find
that, for a particular choice of leading-order operators, nucleon-nucleon phase
shifts and the deuteron ground-state energy converge to cutoff-independent
plateaus, for all regulator functions we investigate. This observation may
enable improved calculations with chiral Hamiltonians that also include
three-nucleon interactions.Comment: 10 pages, 6 figures, published versio
A visibility and total suspended dust relationship
This study reports findings on observed visibility reductions and associated concentrations of mineral dust from a detailed Australian case study. An understanding of the relationship between visibility and dust concentration is of considerable utility for wind erosion and aeolian dust research because it allows visibility data, which are available from thousands of weather observation stations worldwide, to be converted into dust concentrations. Until now, this application of visibility data for wind erosion/dust studies has been constrained by the scarcity of direct measurements of co-incident dust concentration and visibility measurements. While dust concentrations are available from high volume air samplers, these time-averaged data cannot be directly correlated with instantaneous visibility records from meteorological observations. This study presents a new method for deriving instantaneous values of total suspended dust from time averaged (filter-based) samples, through reference to high resolution PM10 data. The development and testing of the model is presented here as well as a discussion of the derived expression in relation to other visibility-dust concentration predictive curves. The current study is significant because the visibility-dust concentration relationship produced is based on visibility observations made 10-100km from the dust sources. This distance from source makes the derived relationship appropriate for a greater number of visibility recording stations than widely-used previous relationships based on observations made directly at eroding sources. Testing of the new formula performance against observed total suspended dust concentrations demonstrates that the model predicts dust concentration relatively well (r2=0.6) from visibility. When considered alongside previous studies, the new relationship fits into the continuum of visibility-dust concentration outcomes existing for increasing distance-from-source. This highlights the important influence that distance to source has on the visibility-dust concentration relationship
Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes
Hen egg-white lysozyme has long been the paradigm for enzymatic glycosyl hydrolysis with retention of configuration, with a protonated carboxylic acid and a deprotonated carboxylate participating in general acid-base catalysis. In marked contrast, the retaining chitin degrading enzymes from glycosyl hydrolase families 18 and 20 all have a single glutamic acid as the catalytic acid but lack a nucleophile on the enzyme. Both families have a catalytic (ÎČα)8-barrel domain in common. X-ray structures of three different chitinolytic enzymes complexed with substrates or inhibitors identify a retaining mechanism involving a protein acid and the carbonyl oxygen atom of the substrateâs C2 N-acetyl group as the nucleophile. These studies unambiguously demonstrate the distortion of the sugar ring toward a sofa conformation, long postulated as being close to that of the transition state in glycosyl hydrolysis.
Design of secure coding challenges for cybersecurity education in the industry
To minimize the possibility of introducing vulnerabilities in source code, software developers in the industry may attend security awareness and secure coding training. One promising novel approach to raise awareness is to use cybersecurity challenges in a capture-the-flag event. In order for this to be effective, the types of challenges must be adequately designed to address the target group. In this work we look at how to design challenges for software developers in an industrial context, based on survey given to security experts by gathering their experience on the field. While our results show that traditional methods seem to be adequate, they also reveal a new class of challenges based on code entry and interaction with an automated coach.info:eu-repo/semantics/acceptedVersio
Evidence for quark-matter cores in massive neutron stars
The theory governing the strong nuclear force-quantum chromodynamics-predicts that at sufficiently high energy densities, hadronic nuclear matter undergoes a deconfinement transition to a new phase of quarks and gluons(1). Although this has been observed in ultrarelativistic heavy-ion collisions(2,3), it is currently an open question whether quark matter exists inside neutron stars(4). By combining astrophysical observations and theoretical ab initio calculations in a model-independent way, we find that the inferred properties of matter in the cores of neutron stars with mass corresponding to 1.4 solar masses (M-circle dot) are compatible with nuclear model calculations. However, the matter in the interior of maximally massive stable neutron stars exhibits characteristics of the deconfined phase, which we interpret as evidence for the presence of quark-matter cores. For the heaviest reliably observed neutron stars(5,6) with mass M approximate to 2M(circle dot), the presence of quark matter is found to be linked to the behaviour of the speed of sound c(s) in strongly interacting matter. If the conformal bound cs2Peer reviewe
Serial femtosecond zero dose crystallography captures a waterâfree distal heme site in a dyeâdecolourising peroxidase to reveal a catalytic role for an arginine in FeIV=O formation
Obtaining structures of intact redox states of metal centres derived from zero dose Xâray crystallography can advance our mechanistic understanding of metalloenzymes. In dyeâdecolourising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues, aspartate and arginine, in the heterolysis of peroxide to form the catalytic intermediate compound I (Fe IV =O and a porphyrin cation radical). Using serial femtosecond Xâray (SFX) crystallography, we have determined the pristine structures of the Fe III and Fe IV =O redox states of a Bâtype DyP. These structures reveal a waterâfree distal heme site, which together with the presence of an asparagine, infer the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis
Dense matter with eXTP
In this White Paper we present the potential of the Enhanced X-ray Timing and
Polarimetry (eXTP) mission for determining the nature of dense matter; neutron
star cores host an extreme density regime which cannot be replicated in a
terrestrial laboratory. The tightest statistical constraints on the dense
matter equation of state will come from pulse profile modelling of
accretion-powered pulsars, burst oscillation sources, and rotation-powered
pulsars. Additional constraints will derive from spin measurements, burst
spectra, and properties of the accretion flows in the vicinity of the neutron
star. Under development by an international Consortium led by the Institute of
High Energy Physics of the Chinese Academy of Science, the eXTP mission is
expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019
Secure Data Transfer Guidance for Industrial Control and SCADA Systems
This document was developed to provide guidance for the implementation of secure data transfer in a complex computational infrastructure representative of the electric power and oil and natural gas enterprises and the control systems they implement. For the past 20 years the cyber security community has focused on preventative measures intended to keep systems secure by providing a hard outer shell that is difficult to penetrate. Over time, the hard exterior, soft interior focus changed to focus on defense-in-depth adding multiple layers of protection, introducing intrusion detection systems, more effective incident response and cleanup, and many other security measures. Despite much larger expenditures and more layers of defense, successful attacks have only increased in number and severity. Consequently, it is time to re-focus the conventional approach to cyber security. While it is still important to implement measures to keep intruders out, a new protection paradigm is warranted that is aimed at discovering attempted or real compromises as early as possible. Put simply, organizations should take as fact that they have been, are now, or will be compromised. These compromises may be intended to steal information for financial gain as in the theft of intellectual property or credentials that lead to the theft of financial resources, or to lie silent until instructed to cause physical or electronic damage and/or denial of services. This change in outlook has been recently confirmed by the National Security Agency [19]. The discovery of attempted and actual compromises requires an increased focus on monitoring events by manual and/or automated log monitoring, detecting unauthorized changes to a system's hardware and/or software, detecting intrusions, and/or discovering the exfiltration of sensitive information and/or attempts to send inappropriate commands to ICS/SCADA (Industrial Control System/Supervisory Control And Data Acquisition) systems
TNF-α is involved in activating DNA fragmentation in skeletal muscle
Intraperitoneal administration of 100âÎŒg kgâ1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia
- âŠ