1,008 research outputs found

    A photometric search for active Main Belt asteroids

    Full text link
    It is well known that some Main Belt asteroids show comet-like features. A representative example is the first known Main Belt comet 133P/(7968) Elst-Pizarro. If the mechanisms causing this activity are too weak to develop visually evident comae or tails, the objects stay unnoticed. We are presenting a novel way to search for active asteroids, based on looking for objects with deviations from their expected brightnesses in a database. Just by using the MPCAT-OBS Observation Archive we have found five new candidate objects that possibly show a type of comet-like activity, and the already known Main Belt comet 133P/(7968) Elst-Pizarro. Four of the new candidates, (315) Constantia, (1026) Ingrid, (3646) Aduatiques, and (24684) 1990 EU4, show brightness deviations independent of the object's heliocentric distance, while (35101) 1991 PL16 shows deviations dependent on its heliocentric distance, which could be an indication of a thermal triggered mechanism. The method could be implemented in future sky survey programmes to detect outbursts on Main Belt objects almost simultaneously with their occurrence.Comment: 8 pages, 10 figures. Accepted for publication in A&A on December 20, 201

    Twentieth century light curves and the nucleus of comet P/Tempel 2

    Get PDF
    Observations of P/Tempel 2 from 1899 to 1988 corresponding to 13 apparitions are analyzed in order to estimate the perihelion asymmetry of the gas production curve for different periods of its evolution. Using the correlation found by Festou et al. (1990) between the perihelion asymmetries and the delay in perihelion passage due to the action of nongravitational forces, we estimate the mass of the comet to be M approximately equals 1.6 plus or minus 0.5 x 10(exp 14) kg. Assuming a volume of 500 cu km, based on nuclear observations, a density of 0.3 plus or minus 0.1 g/cu cm is obtained

    A non-planar two-loop three-point function beyond multiple polylogarithms

    Get PDF
    We consider the analytic calculation of a two-loop non-planar three-point function which contributes to the two-loop amplitudes for tt ¯ production and γγ production in gluon fusion through a massive top-quark loop. All subtopology integrals can be written in terms of multiple polylogarithms over an irrational alphabet and we employ a new method for the integration of the differential equations which does not rely on the rationalization of the latter. The top topology integrals, instead, in spite of the absence of a massive three-particle cut, cannot be evaluated in terms of multiple polylogarithms and require the introduction of integrals over complete elliptic integrals and polylogarithms. We provide one-fold integral representations for the solutions and continue them analytically to all relevant regions of the phase space in terms of real functions, extracting all imaginary parts explicitly. The numerical evaluation of our expressions becomes straightforward in this way

    The two-loop helicity amplitudes for gg → V 1 V 2 → 4 leptons

    Get PDF
    We compute the two-loop massless QCD corrections to the helicity amplitudes for the production of two electroweak gauge bosons in the gluon fusion channel, gg → V 1 V 2, keeping the virtuality of the vector bosons V 1 and V 2 arbitrary and taking their decays into leptons into account. The amplitudes are expressed in terms of master integrals, whose representation has been optimised for fast and reliable numerical evaluation. We provide analytical results and a public C++ code for their numerical evaluation on HepForge at http://vvamp.hepforge.org. © 2015, The Author(s)

    A non-planar two-loop three-point function beyond multiple polylogarithms

    Get PDF
    We consider the analytic calculation of a two-loop non-planar three-point function which contributes to the two-loop amplitudes for tt ¯ production and γγ production in gluon fusion through a massive top-quark loop. All subtopology integrals can be written in terms of multiple polylogarithms over an irrational alphabet and we employ a new method for the integration of the differential equations which does not rely on the rationalization of the latter. The top topology integrals, instead, in spite of the absence of a massive three-particle cut, cannot be evaluated in terms of multiple polylogarithms and require the introduction of integrals over complete elliptic integrals and polylogarithms. We provide one-fold integral representations for the solutions and continue them analytically to all relevant regions of the phase space in terms of real functions, extracting all imaginary parts explicitly. The numerical evaluation of our expressions becomes straightforward in this way

    Two-loop QCD corrections to the V → qq¯ g helicity amplitudes with axial-vector couplings

    Get PDF
    We compute the two-loop corrections to the helicity amplitudes for the coupling of a massive vector boson to a massless quark-antiquark pair and a gluon, accounting for vector and axial-vector couplings of the vector boson and distinguishing isospin non-singlet and singlet contributions. A new four-dimensional basis for the decomposition of the amplitudes into 12 invariant tensor structures is introduced. The associated form factors are then computed up to two loops in QCD using dimensional regularization. After performing renormalization and infrared subtraction, the finite parts of the renormalized non-singlet vector and axial-vector form factors are shown agree with each other, and to reproduce the previously known two-loop amplitudes. The singlet axial-vector amplitude receives a contribution from the axial anomaly from two loops onwards. This amplitude is computed for massless and massive internal quarks. Our results provide the last missing two-loop amplitudes entering the NNLO QCD corrections of vector-boson-plus-jet production at hadron colliders

    W+W−W^+W^- production at hadron colliders in NNLO QCD

    Get PDF
    Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the fundamental structure of electroweak interactions. We present precise theoretical predictions for on-shell W+W−W^+W^- production that include, for the first time, QCD effects up to next-to-next-to-leading order in perturbation theory. As compared to next-to-leading order, the inclusive W+W−W^+W^- cross section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at the 3% level. The severe contamination of the W+W−W^+W^- cross section due to top-quark resonances is discussed in detail. Comparing different definitions of top-free W+W−W^+W^- production in the four and five flavour number schemes, we demonstrate that top-quark resonances can be separated from the inclusive W+W−W^+W^- cross section without significant loss of theoretical precision.Comment: 7 pages, 3 figure

    A hybrid approach to robustness analyses of flight control laws in re-entry applications

    Get PDF
    The present paper aims at improving the efficiency of the robustness analyses of flight control laws with respect to conventional techniques, especially when applied to vehicles following time-varying reference trajectories, such as in an atmospheric re-entry. A nonlinear robustness criterion is proposed, stemming from the practical stability framework, which allows dealing effectively with such cases. A novel approach is presented, which exploits the convexity of linear time varying systems, coupled to an approximate description of the original nonlinear system by a certain number of its time-varying linearizations. The suitability of the approximating systems is evaluated in a probabilistic fashion making use of the unscented transformation technique. The effectiveness and potentials of the method are ascertained by application to the robustness analysis of the longitudinal flight control laws of the Italian Aerospace Research Center (CIRA) experimental vehicle USV
    • …
    corecore