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1 Introduction

The scattering amplitudes involving a massive electroweak gauge boson and three massless
QCD partons enter, in their different kinematical crossings, the theory predictions for
important QCD precision observables: e+e− → 3 jets, ep→ (2 + 1) jets and pp→ V+jet.

Especially three-jet prodction in e+e− played an outstanding role in establishing QCD
as theory of the strong interaction and in the discovery of the gluon [1]. The quest for a
precise theoretical understading of three-jet production observables [2] demanded higher
order perturbative QCD corrections. The one-loop corrections to the V → qq̄g amplitudes
were computed in the context of the next-to-leading order (NLO) corrections to three-jet
production [3, 4], and the two-loop corrections to these amplitudes [5, 6] were first applied
in computing the next-to-next-to-leading order (NNLO) corrections to this process [7–10].
Crossings of the scattering amplitudes to the other processes were then obtained by analytic
continuation [11, 12] to the relevant kinematical regions.

Beyond tree-level, one can separate the V → qq̄g amplitudes by an isospin projection
on the external quarks into non-singlet contributions (where the gauge boson couples to
the spin line of the external quark) and pure-singlet contributions (where the gauge boson
couples to a closed quark loop unrelated to the external quark spin line). Example diagrams
are shown in figure 1. The pure-singlet contributions vanish trivially for V = W± due to
charge conservation.
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Figure 1. Example of Feynman diagrams for singlet (left) and non-singlet (right) contributions.

The coupling structure of the external vector boson to quarks involves a vector and
an axial-vector component. For massless external quarks, one expects the non-singlet
contributions to the vector and axial-vector V → qq̄g amplitudes to agree due to chirality
conservation of massless fermions. Owing to the conceptual difficulty of handling axial-vector
currents in dimensional regualrization, this agreement has however never been checked
explicitly beyond tree level.

The pure-singlet contribution at one loop vanishes for a vector coupling. For an axial-
vector coupling, one finds a finite one-loop amplitude [13, 14], which vanishes if the internal
quark flavours are summed over a mass-degenerate isospin doublet. Consequently, the
large mass splitting between top and bottom quarks in the third generation results in a
non-vanising pure-singlet axial-vector contribution. The one-loop pure-singlet axial-vector
amplitude is finite for internal massless quarks q′, and suppressed as (mQ′/mV )2 in the
large mass limit of the internal quark Q′. At two loops, the pure-singlet contribution was
computed up to now only for a vector coupling [5, 6].

Most jet observables in e+e− average over the incoming beam direction. In this
case, the pure-singlet axial-vector contribution averages out to zero. Its contribution to
jet production in ep collisions is strongly suppressed by the Z boson mass. In Z+jet
production, the numerical magnitude of the one-loop pure-singlet axial-vector contribution
was found to be very small (per-mille correction) for sufficiently inclusive observables [13],
but potentially becomes sizable in specific angular correlations between the jet and the
decay lepton momenta [15].

Up to now, all NNLO QCD calculations of Z+jet production at the LHC [16–18]
discarded the axial-vector pure-singlet contributions, due to the lack of the corresponding
two-loop axial-vector amplitudes for crossings of Z → qq̄g. At the same level, other axial-
vector pure-singlet contributions to Z+jet production are known [19–21], but could not
be included consistently up to now. The very same axial-vector pure-singlet amplitudes
also contribute to the third-order (N3LO) corrections to Z boson production at hadron
colliders. Their contribution to the inclusive Z boson coefficient functions at N3LO has
been computed most recently [22] by combining loop and phase space integrations.

It is the purpose of the current paper to complete the two-loop helicity amplitudes
for Z → qq̄g by explicitly establishing the identity of vector and axial-vector non-singlet
amplitudes and by computing the missing pure-singlet axial-vector amplitudes for massless
and very massive internal quarks. This paper is structured as follows: in section 2, we
describe a novel four-dimensional tensor decomposition of the helicity amplitudes and
introduce projectors on the relevant form factors, which are then computed in section 3.
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Their renormalization and infrared factorization is described in section 4. The form factors
are then assembled into the helicity amplitudes for Z → qq̄g in section 5. We conclude with
an outlook in section 6.

2 The tensor decomposition including axial-vector terms

We consider the decay of a space-like electroweak gauge boson to a pair of quarks and
a gluon up to two loops in QCD. We work in massless QCD assuming Nf = 5 massless
quarks. When evaluated for a single quark flavour, the axial-vector pure-singlet contribution
contains an axial anomaly, which is cancelled upon summation over both quark flavours in
an isospin doublet. To obtain a consistent result, we also allow top quarks in the virtual
loops of the axial-vector pure-singlet contribution (and only in this contribution), which we
compute in the limit of infinitely large top-mass mt →∞. As a byproduct of our calculation,
we also recompute the well-known non-singlet contributions, limiting ourselves in that case
to consider only massless quarks circulating in the loops.

The full electroweak Standard Model couplings are inserted only in section 5 when
assembling the helicity amplitudes. For their tensor decomposition and the subsequent
calculation of the corresponding form factors, we instead consider QCD coupled to an
external vector or axial-vector current with unit coupling constant. The vector current
is conserved to all orders in perturbation theory, and in any number of dimensions. The
pure-singlet axial-vector current is anomalous and requires renormalization (which cancels
out upon summation over a quark isospin doublet). The conservation of the non-singlet
axial-vector current is broken by dimensional regularisation and has to be restored by a
finite renormalization. The renormalization of axial-vector currents in QCD is described in
detail in section 4 below.

For definiteness, we work in the decay kinematics

V (p4)→ q̄(p1) + q(p2) + g(p3) ,

from which the relevant scattering channels can be obtained by crossing symmetry and a
corresponding analytic continuation [12]. To parametrise the kinematics of this scattering
process, we recall that

p2
1 = p2

2 = p2
3 = 0 , p2

4 = (p1 + p2 + p3)2 = q2 ,

and introduce the usual Mandelstam invariants, defined in the decay kinematics as

s12 = (p1 + p2)2 , s13 = (p1 + p3)2 , s23 = (p2 + p3)2 , s12 + s13 + s23 = q2 .

(2.1)
Note that for generality we use q2 for the invariant mass of the vector boson. For later
convenience, following [23, 24] we also introduce the three dimensionless ratios

x = s12
q2 , y = s13

q2 , z = s23
q2 , with x+ y + z = 1 . (2.2)

In terms of any pair of the variables above, say y, z, the decay kinematics is mapped by

0 < y < 1 , 0 < z < 1− y .
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A possible approach to the computation of multi-loop amplitudes starts with their
decomposition into a basis of independent Lorentz tensor structures, from which one can
then extract the so-called helicity amplitudes. Our starting point here is the construction
described in [25, 26], which makes it possible to avoid the calculation of evanescent tensor
structures in d = 4 space-time dimensions. As we will see, this is particularly convenient in
the presence of an axial coupling. A nice aspect of this construction is also that the number
of independent tensor structures always matches one-to-one the number of independent
helicity amplitudes in d = 4.

In the process under consideration helicity conservation along the massless external
fermion line implies that there can be 2× 2× 3 = 12 independent helicity configurations: 2
for the quark line, 2 for the on-shell gluon and 3 for the off-shell vector boson V . In the
absence of parity breaking terms, these would be reduced to 6 by the trivial transformation
properties of the helicity amplitudes of a 2→ 2 scattering process under parity. As explained
in [25], this reduction no longer takes place starting for five or more external particles,
since the helicity amplitudes in that case depend explicitly on the parity-breaking object
tr5 = εp1p2p3p4 . Clearly, if the vector boson couples chirally as a Standard Model Z or W
boson, this simplification does not occur and we expect a total of 12 independent tensor
structures to be required to fully decompose both vector and axial-vector parts of the
scattering amplitude.

As it was shown in [25, 26], by working in the ’t Hooft-Veltman dimensional regularisa-
tion scheme [27], we can limit ourselves to perform a tensor decompositon assuming that all
external states are in exactly d = 4 space-time dimensions, since all remaining evanescent
tensor structures turn out not to contribute to the helicity amplitudes, even in d = 4− 2ε.
To construct the tensor decomposition for our problem, a convenient starting point is a
basis of four independent vectors in d = 4. The first three vectors can be chosen to be the
three independent momenta pµ1 , p

µ
2 , p

µ
3 , such that the natural fourth independent vector is

the orthogonal, axial-vector

ενρσµp1νp2ρp3σ = εp1p2p3µ = vµA, (2.3)

where εµνρσ is the Levi-Civita symbol, defined using Form conventions that correspond to

ε0123 = −ε0123 = −i, εµνρσεµνρσ = 24 +O(d− 4). (2.4)

We stress here that pi · vA = 0.
Note also that, by using qµi = {pµ1 , p

µ
2 , p

µ
3 , v

µ
A} as independent vectors, we do not need

to include in our tensor decomposition neither gµν nor other higher-rank tensors obtained
from the Levi-Civita tensor as εpipjµν for i, j = 1, 2, 3, since in d = 4 they are not linearly
independent from all tensors built from the qµi . A crucial point here, since we are dealing
with external fermions, is that the same is true also for the Dirac γµ, and we have

γµ =
4∑
i=1

âiq
µ
i , gµν =

4∑
i,j=1

bijq
µ
i q

µ
j , εpkplµν =

4∑
i,j=1

c
(kl)
ij qµi q

µ
j , (2.5)

where clearly the coefficients bij and c
(kl)
ij are scalar functions while âi must be linear

combinations of /qi = qµi γµ. Their exact form does not matter for what follows.
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With these observations, and assuming that helicity is conserved along the fermion line,
the amplitude can be easily decomposed in independent tensors. We start by defining

M = −i
√

4πᾱs Taij ε4,µε3,νAµν (2.6)

where ᾱs is the bare strong coupling and Taij are the SU(3) color fundamental generators.
The external vector or axial-vector vertex does not carry a coupling constant. The rank-two
tensor can be decomposed as

Aµν = ū(p2)/p3u(p1)
[
F̃1p

µ
1p

ν
1 + F̃2p

µ
2p

ν
1 + F̃3v

µ
Av

ν
A + G̃1p

µ
1v

ν
A + G̃2p

µ
2v

ν
A + G̃3v

µ
Ap

ν
1

]
+ ū(p2)/vAu(p1)

[
F̃4p

µ
1v

ν
A + F̃5p

µ
2v

ν
A + F̃6v

µ
Ap

ν
1 + G̃4p

µ
1p

ν
1 + G̃5p

µ
2p

ν
1 + G̃6v

µ
Av

ν
A

]
,

(2.7)

where F̃i and G̃i are scalar form factors. In order to obtain (2.7), we also used the
transversality condition for the external gluon

ε3 · p3 = 0 ,

together with the following gauce choices for the gluon and the off-shell vector boson

ε3 · p2 = 0 , ε4 · p4 = 0 (Lorenz Gauge) .

We stress that this gauge choice implies the following polarisation sums rules

∑
pol

εµ∗3 εν3 = −gµν + pµ3p
ν
2 + pν3p

µ
2

p2 · p3
,

∑
pol

εµ∗4 εν4 = −gµν + pµ4p
ν
4

q2 . (2.8)

While fixing the gauge is not necessary in principle, it provides a clear way to enumerate
all independent structures.

Looking again at (2.7), we see that by using the vector vµA, we generate exactly 12
independent tensors in d = 4 dimensions, which conveniently separate into 6 parity-even
(F̃i) and 6 parity-odd (G̃i) structures. We stress once more that this simple separation is
only possible for the scattering of up to 4 particles.

Starting from (2.7), we can obtain an alternative decomposition, that has the advantage
of involving at most one occurrence of the parity-odd vector vµA, only in those tensors
that are parity-violating. This is particularly useful to get rid of the possible ambiguity in
the order of contraction of pairs of Levi-Civita tensors when we define the corresponding
projectors and apply them on the amplitude using Larin scheme [28]. Starting from the
fact that gµν is parity-even (and can thus contains only products of an even number of vµA),
we can write

gµν =
3∑

i,j=1
bijp

µ
i p

ν
j + b vµAv

ν
A ,

and we easily see that we can effectively substitute vµAvνA ∼ gµν everywhere in the ten-
sor decomposition, still spanning the same vector space. This provides the alternative
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tensor decomposition

Aµν = ū(p2)/p3u(p1)
[
F1p

µ
1p

ν
1 + F2p

µ
2p

ν
1 + F3g

µν +G1p
µ
1v

ν
A +G2p

µ
2v

ν
A +G3v

µ
Ap

ν
1

]
+ ū(p2)γνu(p1)

[
F4p

µ
1 + F5p

µ
2

]
+ ū(p2)γµu(p1)F6p

ν
1

+ ū(p2)/vAu(p1)
[
G4p

µ
1p

ν
1 +G5p

µ
2p

ν
1

]
+G6

[
ū(p2)γµu(p1)vνA + ū(p2)γνu(p1)vµA

]
,

(2.9)

in terms of new form factors Fi and Gj . The choice made for the tensor multiplying form
factor G6 deserves special attention. Indeed, there would be three equivalent choices to
substitute vµAvνA

ū(p2)/vAu(p1)vµAv
ν
A →


ū(p2)/vAu(p1)gµν

ū(p2)γµu(p1)vνA
ū(p2)γνu(p1)vµA

,

and the last two can be rearranged into their symmetric combination

ū(p2)/vAu(p1)vµAv
ν
A → ū(p2)γµu(p1)vνA + ū(p2)γνu(p1)vµA . (2.10)

We chose this last option in (2.9) as the most natural one in the ’t Hooft-Veltman scheme,
as we will elaborate upon in section 3.2.1 below.

We rewrite (2.9) formally as

Aµν =
6∑
i=1

Fi T
E,µν
i +

6∑
i=1

Gi T
O,µν
i , (2.11)

where the identification of the parity-even (TE,µνj ) and parity-odd (TO,µνj ) tensors is obvious
comparing with (2.9).

The newly defined 12 tensors should be thought of as vectors in a vector space endowed
with the scalar product defined by

TP1†
i · TP2

j = TP1,µ1ν1†
i κµ1µ2ν1ν2T

P2,µ2ν2
j (2.12)

where Pi = {E,O} and the metric reads

κµ1µ2ν1ν2 =
(
−gµ1µ2 + pµ1

4 pµ2
4

q2

)(
−gν1ν2 + pν1

3 p
ν2
2 + pν2

3 p
ν2
2

p2 · p3

)
. (2.13)

This definition implements the gauge choice imposed on the external vector bosons. With
this scalar product it is easy to see that even and odd tensors are mutually orthogonal

TE†i · T
O
j = TO†i · T

E
j = 0 . (2.14)

An important point should be stressed here: the decomposition in (2.9) should not be
interpreted as a purely four-dimensional decomposition, but instead as a decomposition valid
in the ’t Hooft-Veltman scheme. This means that when we perform the sums in (2.12), indices
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that are not explicitly contracted with external momenta are taken to be d-dimensional.
This implies, in particular, that we use consistently throughout the calculation

gµνgµν = d , vA · vA = d− 3
4 s12s13s23 . (2.15)

We stress here, to avoid a possible source of confusion with the Levi-Civita tensor, that
when we take the adjoint of the tensors, we do not complex conjugate the vector vA.

Thanks to the orthogonality of the two sets of tensors, we can define two independent
sets of projector operators PPi , which are suitable vectors in the dual vector space defined
such that

PPi · TPj = δij for P = {E,O} . (2.16)

By expanding the projectors in the same basis of dual vectors

PPi =
6∑
j=1

c
(i),P
j TP †j , (2.17)

their coefficients c(i),P
j can be obtained by inverting the matrix (MP )nm = TP †n · TPm as

c
(i),P
j =

(
MP

)−1

ij
. (2.18)

We provide algebraic expressions for the projectors as supplementary material attached to
this paper.

3 Calculation of the form factors

Once the projector operators have been defined, it is conceptually straightforward to apply
them on a representation for the scattering amplitude in terms of Feynman diagrams. Our
calculation proceeds here in a rather standard way: we produce all relevant diagrams at tree
level, one loop and two loops with QGRAF [29] and perform the necessary manipulations
which follow from the application of the projectors defined in (2.17) in FORM [30]. To deal
with γ5 consistently with our tensor decomposition, we use the Larin-scheme [28], which
defines the axial-vector current through the anti-symmetrised replacement

γµγ5 → 1
2
(
γµγ5 − γ5γµ

)
= 1

6ε
µνρσγνγργσ . (3.1)

Notice that Larin prescription has been adapted to be consistent with our conventions for
the Levi-Civita tensor. With this definition, no explicit dimensional splitting is required.
Moreover, we see that in this scheme it is straightforward to apply both parity-even and
parity-odd projectors on the Feynman diagrams: in fact, parity invariance of the form
factors, together with the block-diagonal form of the projector operators, guarantee that the
parity-even(odd) projectors only need to be applied on the vector(axial-vector) part of the
scattering amplitude. The definition in (3.1), together with the explicit form of the tensors
in (2.17), shows that one always has to consider at most the contraction of one pair of
Levi-Civita tensors. The contraction can be performed assuming that indices are in general
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Figure 2. Example of Feynman diagrams for singlet (left) and non-singlet (right) two-loop
massless corrections.

d-dimensional and this allows for a straightforward manipulation of the corresponding scalar
expressions in dimensional regularisation.

After acting with the projectors on the Feynman diagrams, it is immediate to manipulate
all resulting Feynman integrals and map them to integral families. At this point, our
treatment of the Feynman diagrams that only contain massless quarks proceeds differently
compared to those that involve the exchange of massive top quarks, we therefore discuss
the two cases separately below.

3.1 Massless two-loop corrections

As already stated in the previous sections, when computing the massless quark contributions,
we consider both a vector and axial-vector interaction and include all relevant Feynman
diagrams, including pure-singlet and non-singlet diagrams. While results for the purely
vector and for the non-anomalous axial-vector part of the amplitude have already been
known in the literature for some time [31], recomputing them in our current setup allows
us to perform various consistency checks on the calculation, as it will be explained below.

Up to two loops, all integrals stemming from Feynman diagrams which only involve
massless virtual quark exchanges can be easily mapped to the integral families originally
defined in [23, 24]. Some examples of the relevant Feynman diagrams are displayed in figure 2.

We observe that, after the projectors are applied to the Feynman diagrams, only scalar
integrals up to numerator rank 4 appear in the parity-even form factors, while the parity-
odd ones require seven-propagator non-planar integrals up to rank 5. Despite this, the
reduction is relatively simple and can be easily performed with standard automated codes.
We use Reduze 2 [32, 33], which conveniently includes proceedures to map the Feymann
diagrams to the relevant integral families (and their crossings), and takes care of removing
redundancies among the integrals due to sector symmetries and sector relations, see ref. [33]
for details. By using the explicit analytic expressions for the master integrals [23, 24], it is
then straightforward to obtain analytic expressions for the bare vector and axial-vector form
factors up to two-loops in terms of so-called Harmonic Polylogarithms (HPLs) [34] and 2-
dimensional Harmonic Polylgarithms (2dHPLs) [23], which can be evaluated numerically [35–
37] from their series representations.

In the modern language of multiple polylogarithms, we define 2dHPLs as

G(a1, . . . , an; z) =
∫ z

0

dx1
x1 − a1

G(a2, . . . , an;x1) , G(0, . . . , 0; z) = 1
n! logn z ,

G(z) = 1 , with ai = {−1, 1, 0,−y, 1− y} , (3.2)

– 8 –
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Figure 3. Example of self-energy corrections to the pure-singlet class of diagrams. Both Nf massless
and Nh massive quarks are allowed to circulate in all fermion loops.

where for the problem under study, the variables y, z turn out to be any pair of the
dimensionless ratios introduced in eqs. (2.2). The symmetry of the kinematical constraints
allows one to prove that the same set of functions is sufficient to describe the result for any
pair of the variables defined in (2.2). Moreover, it can be shown that by suitably redefined
variables, the same is true in all other kinematically relevant crossings, including the
scattering kinematics [12], allowing to compute the amplitudes for qq̄ → V g and qg → V q

in terms of the same class of functions.

3.2 Massive two-loop corrections

We compute the leading contributions arising from massive fermion loops to the two-loop
pure-singlet axial-vector amplitudes in the limit of a large top quark mass mt →∞. While
the corresponding one-loop amplitudes start at O(1/m2

t ), at two loops we also have an O(1)
contribution in that limit. While we are mostly interested in this O(1) contribution, we
also include all terms up to O(1/m2

t ) in our results for the pure-singlet axial amplitudes
at one and two loops, which allows us to perform consistency checks of our computational
setup and the renormalization and infrared factorization procedure.

We generate the integrands by contracting our twelve projection tensors with the
amplitude, keeping the full dependence on the top quark mass. As explained above, we
limit ourselves to consider mass corrections to the subset of diagrams which contribute
to the pure-singlet amplitude. For consistency, when considering these diagrams we allow
massive top quarks also in self-energy corrections, as for example in figure 3. The Feynman
integrals in the amplitude are then mapped to two-loop integral families using Reduze 2.

In order to obtain an expansion for large mt, we employ the strategy of regions [38].
The top quark mass mt only appears as an internal mass in a closed sub-loop. We first
focus on two-loop diagrams with only one massive subloop. There are two non-vanishing
integration regions contributing to the limit mt → ∞. Let k1 and k2 be the two loop
momenta. We identify k2 as the loop momentum running in the fermion loop. Hence,
the mass mt only appears in loop propagators depending on k2 (or both k1 and k2) while
propagators depending only on k1 are massless. The first region, which we henceforth call
the large region, is the one where all loop momenta are large, i.e. of the same order as mt,

k1 = O(mt), k2 = O(mt). (3.3)

The second region, which we call the small region, is the one where the loop momentum k1

– 9 –
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is small compared to mt, while k2 is still large,

k1 = O(1), k2 = O(mt). (3.4)

The external momenta pi and the Mandelstam invariants are obviously small, i.e. of O(1),
in both regions. The expansion of any loop integral is a sum over the two regions. The
contribution of each region is obtained by expanding the integrand for mt →∞ assuming
the loop momenta scale as in (3.3) for the large region and (3.4) for the small region.

The expansions in the large region, defined by (3.3), yields vacuum integrals of the form∫
d4−2εk1 d

4−2εk2
1

(k2
1)a1 (k2

2 −m2
t )a2 ((k1 + k2)2 −m2

t )a3
(3.5)

which can all be reduced to products of two one-loop tadpole integrals with mass mt.
In order to map the Laurent expansions of the integrands to integrals belonging to the
family defined in (3.5), we first need to remove scalar products of the form ki · pj from the
numerators of the expansions. This is done via a Passarino-Veltman decomposition [39],
which in this case is very simple since it only depends on the metric tensor gµν (it can
equivalently be performed via an angular integration, see e.g. [40]).

The expansion in the small region, defined by (3.4), yieds instead products of one-loop
tadpole integrals with mass mt, times four-point one-loop integrals with massless internal
propagators, i.e. belonging to the following family∫

d4−2εk2
1

(k2
2 −m2

t )a1
×
∫
d4−2εk1

1
(k1)2a2 (k1 + p1)2a3 (k1 + p12)2a4 (k1 + p123)2a5

(3.6)
with pi1i2··· ≡ pi1 + pi2 + · · · , or to families obtained from (3.6) via permutations of external
momenta. The one-loop integrals in k1 are the same integrals that contribute to the one-loop
amplitude for diagrams without massive fermions. Similarly as before, we remove scalar
products of the form k2 · pj and k1 · k2 from the numerators of the expansion via a simple
Passarino-Veltman decomposition for the one-loop integral in k1, where only the metric
tensor gµν appears.

We also have a set of diagrams with two massive fermion loops. These can be cast as
products of two one-loop integrals and only contribute to the large region in (3.3), where
k1 and k2 are the two loop momenta. After expanding the integrands, these diagrams
yield products of two massive one-loop tadpole integrals, which can also be mapped to the
family in (3.5).

As a check of the consistency of the procedure, we used FiniteFlow [41, 42] to verify,
for a selection of integrals, that the expansion by regions commutes with the reduction to
master integrals. In other words, we reconstructed the full mt dependence of the reduction
for a selection of two-loop integrals contributing to the process. We thus performed an
expansion by regions of the left-hand sides and the right-hand sides of the reduction
identities, verifying that they agree after a further reduction to the master integrals of the
families in (3.5) and (3.6).

After reduction to master integrals, the expansion can be expressed in terms of (products
of) simple one-loop master integrals, namely one-loop massive tadpole integrals and the
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massless integrals appearing in the one-loop amplitude. In particular, all contributions to
the pure-singlet axial amplitudes up to O(1/m2

t ) can be expressed in terms of massless
one-loop two-point integrals and one-loop massive tadpoles.

3.2.1 The unrenormalised form factors up to two loops
Putting everything together, we obtain a result for the unrenormalised form factors, including
the non-singlet and pure-singlet corrections up to two loops both for the vector and axial-
vector couplings in massless QCD. Moreover, we also compute the axial-vector pure-singlet
corrections for massive internal top quarks, keeping the m0

t and 1/m2
t terms in an expansion

in inverse powers in mt. While ultimately being interested only in the exact mt →∞ limit,
keeping the next term in the expansion as intermediate step allows us to perform non-trivial
checks on our approach.

We write for the unrenormalised form factors

F̄i = F̄
(0)
i +

(
ᾱs
2π

)
F̄

(1)
i +

(
ᾱs
2π

)2
F̄

(2)
i +O(ᾱ3

s)

Ḡi = Ḡ
(0)
i +

(
ᾱs
2π

)
Ḡ

(1)
i +

(
ᾱs
2π

)2
Ḡ

(2)
i +O(ᾱ3

s) , (3.7)

where ᾱs is the bare strong coupling constant. We use consistently barred symbols for
unrenormlised quantities.

The tree-level contributions to the form factors are not affected by renormalization,
such that F (0)

i = F̄
(0)
i and G(0)

i = Ḡ
(0)
i . The expressions for the tree-level form factors also

allow us to elaborate upon the statement made in the context of (2.10) on the choice that
we made for the tensor multiplying form factor G6. This choice turns out to be the only one
of those described above that is entirely consistent with the ’t Hooft-Veltman prescription.
It is only with this choice that we find that the corresponding tree-level form factors to be
exactly d-independent. We stress that this is a highly non-trivial finding, since all algebra
at intermediate steps is performed in d dimensions, see (2.15). Explicitly, for the vector
tree-level contribution we find

F
(0)
1 = 0 , F

(0)
2 = −2 (s13 + s23)

s12s13s23
, F

(0)
3 = s13 − s23

s13s23
,

F
(0)
4 = −s

2
23 − s12s23 − s13s23 + s12s13

s12s13s23
, F

(0)
5 = s2

13 + s12s13 + s23s13 − s12s23
s12s13s23

,

F
(0)
6 = 2s12 + s13 + s23

s12s13
(3.8)

Similarly, for the axial-vector tree-level (which is only of non-singlet type) contribution
we have

G
(0)
1 = −−s

2
23 − s12s23 − 3s13s23 + s12s13

s12s2
13s

2
23

, G
(0)
2 = −s

2
13 + s12s13 + 3s23s13 − s12s23

s12s2
13s

2
23

,

G
(0)
3 = −4s12 + s13 + 3s23

s12s2
13s23

, G
(0)
4 = −2

(
2s2

12 + s13s12 + 3s23s12 + s2
23 − s13s23

)
s2

12s
2
13s23

,

G
(0)
5 = −2

(
2s2

12 + 3s13s12 + s23s12 + s2
13 − s13s23

)
s2

12s
2
13s23

, G
(0)
6 = − s13 − s23

s12s13s23
. (3.9)
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All form factors receive non-singlet contributions, which we denote by F̄ (0,1,2),n
i and

Ḡ
(0,1,2),n
i . The pure-singlet contributions only enter at two loops in the vector form factors,

denoted by F̄ (2),p
i , due to a generalization of Furry’s theorem [43], and at one and two loops

in the axial-vector form factors, denoted by Ḡ
(1,2),p
i . Since pure-singlet and non-singlet

contributions will be dressed with different electroweak charge factors, they are treated
separately throughout.

4 UV renormalisation and subtraction of the IR poles

The unrenormalised form factors (3.7) contain in general divergences both of ultraviolet (UV)
and infrared (IR) origin, which manifest as poles in the dimensional regulator paramenter ε.

UV poles can be consistently removed by the procedure of renormalisation. In our case,
renormalisation proceeds differently in the purely vector and axial-vector cases and in the
non-singlet and pure-singlet contributions, for two different reasons. First of all, as already
discussed, due to the axial anomaly the pure-singlet axial-vector contribution can only be
computed consistently in the full Standard Model if the closed quark loop is summed over a
complete isospin doublet. A well-defined result for the pure-singlet axial-vector contribution
with a single quark flavour in the loop requires an extra renormalization of the axial-vector
pure-singlet current [28]. This pure-singlet renormalization of the axial anomaly is required
for any γ5 scheme. Secondly, since we work in the Larin scheme, the non-singlet axial-vector
coupling also requires a renormalization to obtain consistent results [28].

We ultimately include top-quark effects in the exact mt →∞ limit, but also compute
corrections up to order 1/m2

t in order to consistently check our renormalisation procedure.
The formulae below reflect therefore the full renormalisation procedure required up to this
order in 1/mt.

According to the discussion above, we renormalise αs by replacing the bare coupling
constant as follows

ᾱsµ
2ε
0 Sε = αsµ

2ε
R

[
1− 1

ε
(β0 +Nh δw)

(
αs
2π

)
+
(
β2

0
ε2
− β1

2ε

)(
αs
2π

)2
+O(α3

s)
]

(4.1)

where Sε = (4π)εe−εγE , with γE = 0.5772 . . . the Euler-Mascheroni constant,

δw = −2
3TR

(
m2
t

µ2
R

)−ε
. (4.2)

We also introduced Nh for the number of heavy flavours of mass mt, such that Nh = 1 for the
pure-singlet axial-vector contribution and zero otherwise. We use the tag Nh to compactly
include the dependence on the top mass in the beta function only for the pure-singlet
axial-vector contribution, which in this calculation is required only to first order in αs
to renormalise the two-loop amplitude. βi are the coefficients of the massless QCD beta
function and read

β0 = 11
6 CA −

4
6TRNf , β1 = 17

6 C
2
A −

10
6 TRCANf − TRCFNf , (4.3)
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where for SU(N) we have

CA = N , CF = N2 − 1
2N , TR = 1

2 ,

with N the number of colors and Nf the number of active massless flavours. We must keep
in mind that an overall factor of ᾱ1/2

s is contained in the relation (2.6) between amplitudes
and form factors. For simplicity, we set µ2

0 = µ2
R = s12 + s13 + s23 = q2 throughout.

In addition to this, the renormalisation of the non-singlet axial-vector current requires
multiplying the non-singlet contributions to the axial-vector form factors Gi by the non-
singlet renormalisation constant, whose explicit value depends on the scheme used for
treating γ5. In the Larin scheme, the latter is known up to four loops [44]. We only require
its value up to two loops in our calculation:

Zna = 1− 2CF
(
αs
2π

)
+
[11

2 C
2
F −

107
36 CFCA + 1

18CFNf

](
αs
2π

)2
+O(α3

s) (4.4)

The renormalization of the axial-vector current is usually stated [28] in the form of
renormalization constants for the non-singlet and the singlet currents, with the singlet
current being the sum of non-singlet and pure-singlet. We choose instead to reformulate
the renormalization in terms of non-singlet and pure-singlet, as introduced in [45]. In this
form, the currents are mapped more easily onto the electroweak coupling factors, but at the
expense of a mixing of non-singlet into pure-singlet contributions under renormalization.
The pure-singlet renormalization constant starts only at order α2

s and reads [28] for a single
quark flavour:

Zsa = CFTR

(
αs
2π

)2 [ 3
2ε + 3

4

]
+O(α3

s) , (4.5)

where the pole part stems from the UV renormalization of the axial anomaly and the finite
part is required to restore the axial Ward identities in dimensional regularization in the
Larin scheme.

Finally, for what concerns the pure-singlet contributions from virtual top quarks to the
axial-vector form factors, we also renormalise mt in the on-shell scheme

m̄t = mt

[
1 +

(
αs
2π

)
δm

]
+O(α2

s) (4.6)

where m̄t is the bare mass and

δm = CF

(
m2
t

µR

)−ε (
− 3

2ε − 2 +O(ε)
)
. (4.7)

Finally, for these contributions gluon wave function renormalisation is performed by multi-
plying the pure-singlet axial-vector part of the form factors with

Z
1/2
A = 1 + 1

2

(
αs
2π

)
Nhδw +O(α2

s) (4.8)

since there is only one external gluon.
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The UV-renormalized form factors are expanded in the renormalized coupling constant
αs = αs(µ2):

Fi = F
(0)
i +

(
αs
2π

)
F

(1)
i +

(
αs
2π

)2
F

(2)
i +O(α3

s) ,

Gi = G
(0)
i +

(
αs
2π

)
G

(1)
i +

(
αs
2π

)2
G

(2)
i +O(α3

s) . (4.9)

We again distinguish non-singlet and pure-singlet contributions by a superscript (n, p).
Putting everything together, we obtain renormalised form factors for the various contri-

butions. For the vector form factors, we find for non-singlet and pure-singlet contributions:

F
(0),n
i = F̄

(0),n
i ,

F
(1),n
i = S−1

ε F̄
(1),n
i − β0

2ε F̄
(0),n
i ,

F
(2),n
i = S−2

ε F̄
(2),n
i − 3β0

2ε F̄
(1),n
i S−1

ε −
(
β1
4ε −

3β2
0

8ε2

)
F

(0),n
i , (4.10)

F
(2),p
i = F̄

(2),p
i , (4.11)

while for the axial-vector non-singlet part we have

G
(0),n
i = Ḡ

(0),n
i ,

G
(1),n
i = S−1

ε Ḡ
(1),n
i − β0

2ε Ḡ
(0),n
i − 2CF Ḡ(0),n

i ,

G
(2),n
i = S−2

ε Ḡ
(2),n
i − 3β0

2ε Ḡ
(1),n
i S−1

ε −
(
β1
4ε −

3β2
0

8ε2

)
Ḡ

(0),n
i

− 2CF Ḡ(1),n
i S−1

ε +
(2β0

ε
+ 11

2 C
2
F −

107
36 CFCA + 1

18CFNf

)
Ḡ

(0),n
i , (4.12)

where we stress that the extra terms in comparison to (4.10) stem from the renormalisation
of the axial-vector current in Larin’s scheme.

For the pure-singlet axial-vector form factors, we consider the contributions from virtual
massless and virtual massive quarks separately. We assemble the resulting one-loop and
two-loop pure-singlet contributions to the form factors depending on whether the axial-
vector current couples to a massless quark (Ḡ(j),p0

i ) or to a massive quark (Ḡ(j),pm
i ) of mass

mt. It should be noted that both these contributions contain massive and massless quark
bubble insertions into their gluon propagators and external gluon legs.

With this in mind, the renormalization of the pure-singlet axial-vector form factors reads:

G
(1),p0
i = S−1

ε Ḡ
(1),p0
i ,

G
(1),pm
i = S−1

ε Ḡ
(1),pm
i ,

G
(2),p0
i = S−2

ε Ḡ
(2),p0
i −

(3β0
2ε + Nhδw

ε

)
S−1
ε Ḡ

(1),p0
i + CFTR

( 3
2ε + 3

4

)
Ḡ

(0),n
i ,
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G
(2),pm
i = S−2

ε Ḡ
(2),pm
i −

(3β0
2ε + Nhδw

ε

)
S−1
ε Ḡ

(1),pm
i + S−1

ε

dḠ
(1),pm
i

dmt
δm

+ CFTR

( 3
2ε + 3

4

)
Ḡ

(0),n
i , (4.13)

where the last term on the right hand sides of the last two equations comes from the renormal-
ization (4.5) of the axial anomaly. These terms cancel out in the difference G(2),pm

i −G(2),p0
i ,

since the summation over an isospin doublet renders the theory
anomaly-free.

The renormalised form factors still have poles of IR nature. IR singularities in QCD are
universal and their structure only depends on the number and type of strongly interacting
partons involved in the scattering process [46–48]. For the case under study, we write the
finite remainders in terms of the renormalised coefficients as:

F
(1),n
i,fin = F

(1),n
i − I1(ε)F (0),n

i ,

F
(2),n
i,fin = F

(2),n
i − I1(ε)F (1),n

i − I2(ε)F (0),n
i ,

G
(1),n
i,fin = G

(1),n
i − I1(ε)G(0),n

i ,

G
(2),n
i,fin = G

(2),n
i − I1(ε)G(1),n

i − I2(ε)G(0),n
i , (4.14)

and

G
(2),p0
i,fin = G

(2),p0
i − I1(ε)G(1),p0

i ,

G
(2),pm
i,fin = G

(2),pm
i − I1(ε)G(1),pm

i . (4.15)

We note that F (2),p
i , G(1),p0

i and G(1),pm
i are already infrared-finite.

For our process, since we only have three coloured particles, the Catani operators [46]
I1(ε) and I2(ε) are diagonal in color space. The operator I1 reads

I1(ε) = − eεγE

2Γ(1− ε)

[
N

( 1
ε2

+ 3
4ε + β0

2Nε

)
(S13 + S23)− 1

N

( 1
ε2

+ 3
2ε

)
S12

]
, (4.16)

with
Sij =

(
−sij
q2

)−ε
. (4.17)

The operator I2(ε) instead reads

I2(ε) = 1
2I1(ε)2 + β0

ε
I1(ε)− e−εγE Γ(1− 2ε)

Γ(1− ε)

(
β0
ε

+K

)
I1(2ε)−H2(ε) , (4.18)

where

H2(ε) = eεγE

4εΓ(2− ε)H2 , (4.19)

with

H2 =
(

4ζ3 + 589
432 −

11π2

72

)
N2 +

(
−1

2ζ3 −
41
54 −

π2

48

)
+
(
−3ζ3 −

3
16 + π2

4

)
1
N2

+
(
−19

18 + π2

36

)
NNf +

(
− 1

54 −
π2

24

)
Nf

N
+ 5

27N
2
f , (4.20)
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and finally the constant K is

K =
(

67
18 −

π2

6

)
CA −

10
9 TRNf . (4.21)

In all the above expressions for the Catani operators, Nf is taken equal to the number of
light quark flavours in all non-singlet contributions, and equal to the number of light quark
flavours plus one in the pure-singlet contributions.

The finiteness of (4.14) was already established [6] for the vector form factors. The
finiteness of the axial-vector form factors, especially in the pure-singlet case (4.15), where it
was also checked at order 1/m2

t in the large-mass expansion, and which takes place prior to
summation over an isospin doublet, represents a strong check on the internal consistency of
our calculation.

5 The helicity amplitudes

The form factors that were computed in the previous section describe the coupling of an
external off-shell vector or axial-vector current to a qq̄g-system. From these form factors,
it is possible to reconstruct the helicity amplitudes for the decay of any vector boson
V = γ∗, Z,W± into qq̄g by multiplying them by the appropriate electroweak couplings.
Helicity amplitudes for vector-boson-plus-parton production can then be obtained by
analytical continuation to the appropriately crossed kinematical regions [12].

5.1 Helicity amplitudes for an external vector and axial-vector current

It is useful to start off by considering the helicity amplitudes for the case of a generic vector
or axial-vector current. We use the spinor helicity formalism and let the off-shell current
decay to two massless leptons

V (p4)→ l(p5) + l̄(p6) . (5.1)

We call λf the helicity of fermion f and λ3 the helicity of the external gluon g(p3). We
define the left- and right-handed currents for a pair of fermions as

CµL(p, q) = ūL(q)γµuL(p) = 〈qγµp], CµR(p, q) = ūR(q)γµuR(p) = [qγµp〉. (5.2)

The polarization vector for the external gluon, with positive and negative helicity respectively,
is instead given by (remembering that we picked p2 as gauge vector, and that the helicities
are defined for p3 outgoing)

εµ3,− = 〈3γ
µ2]√

2[32]
, εµ3,+ = 〈2γµ3]√

2〈23〉
. (5.3)

Finally, in order to write down the helicity amplitudes starting from our general tensor
structure in (2.9), we also use the following four-dimensional representation of the vector vµA

vµA ≡ ε
p1p2p3µ = 1

4
[
[123γµ1〉 − 〈123γµ1]

]
. (5.4)
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Note that, at this stage, vA will only be contracted with four-dimensional external states,
hence its four-dimensional representation is sufficient here, although d-dimensional identities
were used in computing the form factors.

With these definitions, we consider the quantity

Mλq2λ3λl5
= ελ3

3,ρA
µρ
λq̄1λq2

Cµλl5
(p5, p6) , (5.5)

where Aµρλq̄1λq2 is obtained from the general decomposition for the amplitude in (2.9) by fixing
quark and gluon helicities. We stress that this means that we assign helicities according to
the handedness of the outgoing fermions. We consider for definiteness the case of left-handed
quark and lepton currents. By considering the vector and axial-vector current separately,
we can write for both in spinor helicity formalism as

Mv
L+L = 1√

2

[
〈12〉[13]2

(
α1〈536] + α2〈526]

)
+ α3〈25〉[13][36]

]
, (5.6)

Ma
L+L = 1√

2

[
〈12〉[13]2

(
β1〈536] + β2〈526]

)
+ β3〈25〉[13][36]

]
, (5.7)

where the superscrpt (v, a) indicate the vector and axial-vector parts. The coefficients αi
encompass the contribution from the former while the βi indicate the latter. They can be
written in terms of the original form factors as

α1 = −F1 , α2 = F2 − F1 + 2F6
s23

, α3 = 2F3 −
2s12F6
s23

, (5.8)

β1 = 1
2
[
s23 (G1 +G3) + s12 (G3 −G4)

]
,

β2 = 1
2
[
s13G3 + s23 (G1 −G2 +G3)− s12G4 + s12G5 − 2G6

]
,

β3 = s12 (G6 − s13G3) . (5.9)

We stress that both the vector and the axial-vector part can be decomposed in terms of the
same spinor structures.

Similarly, for the opposite choice of the gluon helicity we find

Mv
L−L = 1√

2

[
〈23〉2[12]

(
γ1〈536] + γ2〈516]

)
+ γ3〈23〉〈35〉[16]

]
, (5.10)

Ma
L−L = 1√

2

[
〈23〉2[12]

(
δ1〈536] + δ2〈516]

)
+ δ3〈23〉〈35〉[16]

]
, (5.11)

where

γ1 = 1
s23

[
s13F2 + 2 (F5 − F3)

]
,

γ2 = 1
s23

[
s13(F2 − F1)− 2(F4 − F5 + F6)

]
,

γ3 = −2(s23F3 + s12F6)
s23

, (5.12)
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δ1 = 1
2s23

[
s13(s23G2 − (s12 + s13)G3 + s12G5)− 2(s12 + s13)G6

]
,

δ2 = − 1
2s23

[
s2

13G3 + 4s23G6 + s13(s23(G1 −G2 +G3) + s12G4 − s12G5 + 2G6)
]
,

δ3 = −s12 (s13G3 + 3G6) . (5.13)

Similar relations can be written for a right-handed quark current, which are related
to the ones above by parity conjugation, with a relative minus sign between vector and
axial results,

Mv
R+L = − 1√

2

[
[23]2〈12〉

(
γ1〈536] + γ2〈516]

)
+ γ3[23][36]〈15〉

]
, (5.14)

Ma
R+L = 1√

2

[
[23]2〈12〉

(
δ1〈536] + δ2〈516]

)
+ δ3[23][36]〈15〉

]
, (5.15)

Mv
R−L = − 1√

2

[
[12]〈13〉2

(
α1〈536] + α2〈526]

)
+ α3[26]〈13〉〈35〉

]
, (5.16)

Ma
R−L = 1√

2

[
[12]〈13〉2

(
β1〈536] + β2〈526]

)
+ β3[26]〈13〉〈35〉

]
, (5.17)

where αi, βi, γi and δi are the same given above in terms of the form factors.
The finite remainder for vector and axial-vector helicity coefficients Ωi = {αi, γi} and

Λi = {βi, δ} can be expanded as series in the strong coupling

Ωi = Ω(0)
i +

(
αs
2π

)
Ω(1)
i +

(
αs
2π

)2
Ω(2)
i +O(α3

s) ,

Λi = Λ(0)
i +

(
αs
2π

)
Λ(1)
i +

(
αs
2π

)2
Λ(2)
i +O(α3

s) . (5.18)

At l-loops, they inherit the corresponding decomposition into non-singlet and pure-singlet
from the finite remainder of the form factors computed in the previous section. Moreover
for the pure-singlet axial-vector case, we split them further into massless and massive
contributions. We indicate the various components as above with Ω(l),n

i , Ω(l),p
i , Λ(l),n

i , Λ(l),p0
i ,

Λ(l),pm
i respectively.

At this point, we can perform an important consistency check on our calculation. We
verified that after UV renormalisation and IR subtraction, as expected, the non-singlet
contribution for the vector and axial-vector helicity amplitudes agree to the two-loop order.
We find, in particular

α
(0)
i = −β(0)

i γ
(0)
i = −δ(0)

i ,

α
(1),n
i = −β(1),n

i , γ
(1),n
i = −δ(1),n

i ,

α
(2),n
i = −β(2),n

i , γ
(2),n
i = −δ(2),n

i . (5.19)

The minus-sign between the α, γ (vector) and β, δ (axial-vector) coefficients arises from the
definition of the basic vector and axial-vector amplitudes in terms of left-handed (V-A) quark
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currents in (5.6), (5.7), which are then compensated by the explicit minus-signs between
vector and axial-vector amplitudes for right-handed (V+A) quark currents in (5.14)–(5.17).

As exemplification of our results, we conclude this section by providing some analytic
formulas for the axial-vector pure-singlet contributions. At tree level there is no pure-singlet
contribution, so we provide the non-singlet results, which read

β
(0)
1 = 0 , β

(0)
2 = − 4

q4
1
yz

, β
(0)
3 = 4

q2
1− y
yz

, (5.20)

δ
(0)
1 = 0 , δ

(0)
2 = 4

q4
1
yz

, δ
(0)
3 = 4

q2
1− z
yz

. (5.21)

At one loop instead we find for the pure-singlet contributions

β
(1),pm
1 = β

(1),pm
2 = β

(1),pm
3 = O

( 1
m2
t

)
,

δ
(1),pm
1 = δ

(1),pm
2 = δ

(1),pm
3 = O

( 1
m2
t

)
, (5.22)

β
(1),p0
1 = 0 , β

(1),p0
2 = 0 , β

(1),p0
3 = 4

q2

[ 1
y + z

+ log (1− y − z)
(y + z)2

]
, (5.23)

δ
(1),p0
1 = 0 , δ

(1),p0
2 = 0 , δ

(1),p0
3 = 4

q2

[ 1
y + z

+ log (1− y − z)
(y + z)2

]
, (5.24)

where we notice that, only at one-loop order, δ(1),p0
i = β

(1),p0
i for i = 1, 2, 3.

Finally, at two loops the pure-singlet coefficients corresponding to the axial-vector
current coupled to a massive quark loop are very compact. Limiting ourselves to the order
zero in the large-mass expansion we find

β
(2),pm
1 = O

( 1
m2
t

)
, β

(2),pm
2 = −3CF

q4
1
yz

[
1 + 2 log m

2
t

q2

]
+O

( 1
m2
t

)
,

β
(2),pm
3 = 3CF

q2
1− y
yz

[
1 + 2 log m

2
t

q2

]
+O

( 1
m2
t

)
, (5.25)

δ
(2),pm
1 = O

( 1
m2
t

)
, δ

(2),pm
2 = 3CF

q4
1
yz

[
1 + 2 log m

2
t

q2

]
+O

( 1
m2
t

)
,

δ
(2),pm
3 = 3CF

q2
1− z
yz

[
1 + 2 log m

2
t

q2

]
+O

( 1
m2
t

)
. (5.26)

The corresponding results for the coupling to a massless quark loop are lenghtier and can
be obtained from the supplementary material attached to this paper in electronic format.
As an example, we provide here the result for the β(2),p0

1 . We decompose it according to
different powers of N as follows

β
(2),p0
1 = 1

q4

[
NK1 + 1

N
K2

]
, (5.27)
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where the functions K1 and K2 are linear combinations of 2-dimensional harmonic polylog-
arithms with rational coefficients. In particular we find for the first

K1 =
13∑
i=1

RiQi ,

with

R1 = 1
y3 , R2 = 1

y(z − 1) , R3 = z

(z − 1)(y + z − 1)2 , R4 = z

y2(y + z)2 ,

R5 = y − z + 2
y(z − 1)(y + z) , R6 = 3y + 2z

y2(y + z)2 , R7 = 5y2 + 5yz + 4z − 4
y(z − 1)(y + z − 1)(y + z) ,

R8 = y2 + 6yz + 3z2

y2z(y + z)2 , R9 = 5y2 − 2yz + 2y + 4z2 − 8z + 4
y2(z − 1)3 ,

R10 = 10y3 − y2z2 + 13y2z − 12y2 − 6yz2 + 12yz − 6y − 8z3 + 24z2 − 24z + 8
y2(z − 1)2(y + z − 1)2 ,

R11 = 2y2 + 3yz2 − 3yz + 2y + 3z3 − 9z2 + 10z − 4
y(z − 1)2(y + z − 1)(y + z) ,

R12 = y2z + 4yz2 − 6yz + 4y + 3z3 − 4z2 + 2z
y2(z − 1)(y + z)2 ,

R13 = 5y3z + 5y3 + 8y2z2 + 10y2z + 2y2 + 3yz3 − 5yz2 + 18yz − 6y − 8z3 + 12z2 − 4z
y(z − 1)2z(y + z)2 ,

and

Q1 = −12ζ(3)G(1− z, y)− 2
3π

2G(1, z)G(1− z, y)− 4G(0, 0, 1, z)G(1− z, y)

− 4G(1, 0, 1, z)G(1− z, y) + 4G(0, 1, z)G(1− z, 0, y) + 2
3π

2G(1− z, 0, y)

− 4G(0, 1, z)G(1− z, 1− z, y)− 2
3π

2G(1− z, 1− z, y)− 4G(1, 1, z)G(−z, 0, y)

+ 4G(0, 1, z)G(−z, 1− z, y) + 4G(0, 1, z)G(−z,−z, y) + 4G(1, 1, z)G(−z,−z, y)

+ 4G(0, 1, 1, z)G(−z, y) + 4G(1, 0, 1, z)G(−z, y) + 4G(1, z)
[
G(1− z, 0,−z, y)

−G(1− z, 1− z,−z, y)−G(−z, 0, 1− z, y)−G(−z, 1− z, 0, y)

+G(−z, 1− z,−z, y)−G(−z,−z, 0, y) +G(−z,−z, 1− z, y) +G(−z,−z,−z, y)
]

− 4G(1− z, 0, 1, 0, y) + 4G(1− z, 0,−z, 1− z, y) + 4G(1− z, 1− z, 1, 0, y)
− 4G(1− z, 1− z,−z, 1− z, y) + 4G(−z, 0, 1, 0, y)− 4G(−z, 0, 1− z, 1− z, y)
− 4G(−z, 1− z, 0, 1− z, y) + 4G(−z, 1− z, 1, 0, y)− 4G(−z, 1− z, 1− z, 0, y)
+ 4G(−z, 1− z,−z, 1− z, y)− 4G(−z,−z, 0, 1− z, y)− 4G(−z,−z, 1− z, 0, y)
+ 4G(−z,−z, 1− z, 1− z, y) + 4G(−z,−z,−z, 1− z, y) ,

Q2 = 1
2G(1− z, y) + 1

2G(1, z)− 1 ,

Q3 = 1
2G(0, y)G(0, z)− 1

2G(1, z)G(−z, y)− 1
2G(−z, 1− z, y)

− 1
2G(0, 1, z)− 1

2G(1, 0, z) ,
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Q4 = G(1, z)G(0, 1− z, y)−G(1, z)G(0,−z, y) +G(1, z)G(1− z, 0, y)

+G(1, z)G(−z, 0, y)− 8
3G(1− z, y)−G(0, 1, z)G(1− z, y)−G(0, 1, z)G(−z, y)

+G(0, z)G(0, 1− z, y)−G(1, 0, z)G(−z, y) +G(0, y)G(1, 1, z)
−G(0, z)G(1− z, 1− z, y)−G(0, z)G(−z, 1− z, y) +G(0, 1− z, 1− z, y)
−G(0,−z, 1− z, y) +G(1− z, 0, 1− z, y)−G(1− z, 1, 0, y) +G(1− z, 1− z, 0, y)

+G(−z, 0, 1− z, y) +G(−z, 1− z, 0, y) + 2
3G(1, 0, y)−G(0, 1, 0, y)− 8

3G(1, z)

− 2
3G(1, 0, z)−G(0, 1, 1, z)−G(1, 0, 1, z) ,

Q5 = 2G(1− z, y) + 2G(1, z) ,

Q6 = −2G(1, z)G(1− z, y) + 4
3G(1− z, y)− 2G(1− z, 1− z, y) + 5

3G(1, 0, y)

+ 4
3G(1, z) + 1

3G(1, 0, z)− 2G(1, 1, z) ,

Q7 = −1
2G(0, y) ,

Q8 = G(0, 1, z)(−G(1− z, y))−G(0, 1, z)G(−z, y) +G(1, z)G(0, 1− z, y)
+G(0, y)G(1, 1, z)−G(1, 1, z)G(−z, y) +G(1, z)G(1− z, 0, y)
−G(1, z)G(1− z,−z, y) +G(1, z)G(−z, 0, y)−G(1, z)G(−z, 1− z, y)
−G(1, z)G(−z,−z, y) +G(0, 1− z, 1− z, y) +G(1− z, 0, 1− z, y)
−G(1− z, 1, 0, y) +G(1− z, 1− z, 0, y)−G(1− z,−z, 1− z, y)
+G(−z, 0, 1− z, y) +G(−z, 1− z, 0, y)−G(−z, 1− z, 1− z, y)
−G(−z,−z, 1− z, y)−G(0, 1, 0, y)−G(0, 1, 1, z)−G(1, 0, 1, z) ,

Q9 = G(0, y)(−G(0, 1, z)) + 1
6π

2G(1− z, y) +G(0, 1, z)G(1− z, y)

−G(1, z)G(0,−z, y) +G(1, z)G(1− z,−z, y)−G(0,−z, 1− z, y)

−G(1− z, 1, 0, y) +G(1− z,−z, 1− z, y)− 1
6π

2
[
G(0, y)−G(1, z)

]
+G(0, 1, 0, y) +G(0, 0, 1, z) +G(1, 0, 1, z) + 3ζ(3) ,

Q10 = −1
2G(1, z)G(−z, y)− 1

2G(−z, 1− z, y) + 1
2G(1, 0, y)− 1

2G(0, 1, z)− π2

12 ,

Q11 = 1
2G(0, z) ,

Q12 = −1
2G(0, z)G(1− z, y) + 1

2G(1, z)G(−z, y) + 1
2G(−z, 1− z, y) ,

Q13 = 1
2G(0, y)G(1, z)− 1

2G(1, z)G(−z, y) + 1
2G(0, 1− z, y) + 1

2G(1− z, 0, y)

− 1
2G(−z, 1− z, y)− 1

2G(1, 0, y)− 1
2G(0, 1, z) .

For K2 we write instead

K2 =
19∑
i=14

RiQi
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with

R14 = y − z + 2
y(z − 1)(y + z) , R15 = 2z − y

(y + z)4 , R16 = 2y + 2z − 3
(y + z − 1)(y + z)2 ,

R17 = (y − 1)
(
y3 + y2z − 7y2 − yz2 − 5yz + 5y − z3 + 2z2 − z

)
y(y + z − 1)2(y + z)3 ,

R18 = y3 + y2z − 3y2 − yz2 + 3yz + 2y − z3 + 6z2 − 4z
(y + z − 1)2(y + z)3 ,

R19 = y3 + 4y2z2 − 5y2z + 3y2 + 4yz3 − 9yz2 + 10yz − 4y + 3z3 − 5z2 + 2z
y(z − 1)2(y + z − 1)(y + z)2 ,

and

Q14 = 1 ,

Q15 = −2
3π

2G(1− z, y)− 4G(0, y)G(1, 0, z) + 4G(1, 0, z)G(1− z, y)

− 4G(0, z)G(1− z, 0, y) + 4G(1− z, 1, 0, y) + 4G(0, 1, 0, y)− 2
3π

2G(1, z)

+ 4G(0, 1, 0, z) + 4G(1, 1, 0, z) ,
Q16 = 2G(0, y) ,
Q17 = 2G(1, 0, z)− 2G(1, 0, y) ,

Q18 = 2G(0, y)G(0, z)− 4G(1, 0, z) + π2

3 ,

Q19 = −G(0, z) .

As discussed above, the analytic results for the remaining coefficients can be found in
the supplementary attached to this paper.

5.2 Helicity amplitudes for a Standard Model vector boson

We are now ready to build the helicity amplitudes for a standard model vector boson V

connecting a qq̄g system and to a lepton-antilepton pair. We write the coupling of the
vector boson V to two fermions f1f2 in the two equivalent ways

−ieΓV f1f2
µ = −i

√
4πα

[
vVf1f2γ

µ + aVf1f2γ
µγ5

]
= −i

√
4πα

[
LVf1f2γ

µ
(1− γ5

2

)
+RVf1f2γ

µ
(1 + γ5

2

)]
(5.28)

where clearly
LVf1f2 = vVf1f2 − a

V
f1f2 , RVf1f2 = vVf1f2 + aVf1f2

and for the three types of vector bosons we have

Lγf1f2
= Rγf1f2

= −ef1δf1f2 (5.29)

LZf1f2 = If1
3 − sin2 θwef1

sin θw cos θw
δf1f2 , RZf1f2 = −sin θwef1

cos θw
δf1f2 (5.30)

LWf1f2 = εf1,f2√
2 sin θw

, RWf1f2 = 0 . (5.31)
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In the formulas above α is the electroweak coupling constant, θw is the Weinberg angle,
I3 = ±1/2 is the third component of the weak isospin and in all formulas the charges ei
are measured in terms of the fundamental electric charge e > 0. Moreover, εf1,f2 = 1 if
f1 6= f2 but belonging to the same isospin doublet and zero otherwise. Finally, we write
the propagator of the vector boson V of momentum q and mass mV as Pµν(q,mV ), whose
expression in Lorentz gauge reads

Pµν(q,mV ) =
i
(
−gµν + qµqν

q2

)
D
(
q2,m2

V

) , (5.32)

with
D
(
q2,m2

V

)
= q2 −m2

V + iΓVmV .

From (5.28), we can immediately read off the coupling factors of all non-singlet con-
tributions: vVf1f2

for the vector form factors and aVf1f2
for the axial-vector form factors.

Consequently, when re-casting the form factors into helicity amplitudes, we expect each am-
plitude for a specific quark helicity to contain a linear combination of vector and axial-vector
form factors.

In the pure-singlet contributions, the vertex (5.28) is coupled to an internal quark
loop, thus requiring a summation over the internal quark flavours. In the vector case, this
summation amounts to an overall factor

Nv
f,γ =

∑
q

eq , Nv
f,Z =

∑
q

(
LZqq +RZqq

)
2 , Nv

f,W = 0 , (5.33)

with the sums running over the active quark flavours. In the axial-vector case, the summation
must be performed over complete quark isospin doublets. For mass-degenerate quarks in the
doublet, the summation of up-type and down-type contribution cancels identically. In case
of a mass-splitting in the doublet, the axial-vector pure-singlet contribution is obtained as
the difference between up-type and down-type quark contributions in the loop, multiplied
by a coupling factor

Na
f,γ = 0 , Na

f,Z = 1
4 sin θw cos θw

, Na
f,W = 0 . (5.34)

The last identity in (5.33) is a consequence of charge conservation while, as already discussed,
there can be a contribution from the axial-vector coupling to the pure-singlet amplitude
only in the case of the production of a Z boson.

With these definitions, we write the helicity amplitudes for a vector boson V as

MV
L+L = −

i
√

4παs(4πα)LVl5l6√
2D(p2

56,m
2
V )

Taij
[
〈12〉[13]2

(
A1〈536] +A2〈526]

)
+A3〈25〉[13][36]

]
,

(5.35)

MV
L−L = −

i
√

4παs(4πα)LVl5l6√
2D(p2

56,m
2
V )

Taij
[
〈23〉2[12]

(
B1〈536] +B2〈516]

)
+B3〈23〉〈35〉[16]

]
,

(5.36)
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where p56 = p5 + p6. The l-loop coefficients can be written in terms of the l-loop Ωi and Λi
introduced above1 as follows

A
(l)
i = LVq1q2α

(l),n
i +Nv

f,V α
(l),p
i +Na

f,V

(
β

(l),p0
i − β(l),pm

i

)
, (5.37)

B
(l)
i = LVq1q2γ

(l),n
i +Nv

f,V γ
(l),p
i +Na

f,V

(
δ

(l),p0
i − δ(l),pm

i

)
, (5.38)

where we used the fact that the non-singlet vector and axial-vector parts are equal after
UV renormalisation and IR subtraction.

In the same way, be obtain for right-handed quarks

MV
R+L =

i
√

4παs(4πα)LVl5l6√
2D(p2

56,m
2
V )

Taij
[
[23]2〈12〉

(
C1〈536] + C2〈516]

)
+ C3[23][36]〈15〉

]
, (5.39)

MV
R−L =

i
√

4παs(4πα)LVl5l6√
2D(p2

56,m
2
V )

Taij
[
[12]〈13〉2

(
D1〈536] +D2〈526]

)
+D3[26]〈13〉〈35〉

]
,

(5.40)

with

C
(l)
i = RVq1q2γ

(l),n
i +Nv

f,V γ
(l),p
i −Na

f,V

(
δ

(l),p0
i − δ(l),pm

i

)
, (5.41)

D
(l)
i = RVq1q2α

(l),n
i +Nv

f,V α
(l),p
i −Na

f,V

(
β

(l),p0
i − β(l),pm

i

)
. (5.42)

We stress that the remaining four helicity amplitudes can be obtained from the ones given
above, by a CP tranformation and changing all relevant couplings. The CP transformation
acts on the spinor products by swapping angle and square brackets, but it leaves the
functional part of the coefficients unchanged.

5.3 Checks on the results

In deriving the results for the renormalized form factors in section 4 and the resulting
helicity amplitudes in this section, we have performed various checks, which we briefly
summarize in the following.

The infrared pole structure of the form factors at one loop and two loops can be
predicted in terms of universal IR pole operators and lower-order results, as described
in (4.14), (4.15). We observe that all form factors up to two loops reproduce the predicted
IR pole structure. This is a particularly strong check for what concerns the axial-vector
part of the result, since the latter requires non-trivial UV renormalisation, which depends
on the scheme used to deal with γ5 in dimensional regularisation.

As a second non-trivial check for our correct implementation of the Larin scheme, we
have verified explicitly up to two loops that the non-singlet axial-vector and purely vector
helicity amplitudes agree after UV renormalisation and IR subtraction, see (5.19).

The vector parts of the helicity amplitudes were computed previously up to two loops [6],
and we reproduced these earlier results. The axial-vector singlet parts were only known
to one-loop, and we verified that the resulting one-loop helicity amplitudes agree with
the literature [21].

1See discussion around (5.18).
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Finally, we performed a thorough check of the helicity amplitudes up to one loop
against OpenLoops2 [49, 50], both for the exchange of a virtual photon and of a Z boson.
This allowed us to validate all electroweak couplings, including the overall normalisation of
Na
f,Z , see (5.34).

6 Conclusions

The two-loop helicity amplitudes for V → qq̄g constitute the purely virtual contribution
to the NNLO corrections to e+e− → 3 jets, as well as in different kinematical crossings to
ep→ (2 + 1) jets and pp→ V + 1 jet. They were computed already long ago [5, 6] for a
purely vector-like coupling of the boson V . Owing to chirality conservation for massless
fermions, these results can be extended in a straightforward manner to an axial-vector
coupling of V [6, 31] for non-singlet type contributions, where the vector boson couples to
the external quark line. These amplitudes were used subsequently in the NNLO calculations
for the above processes in e+e− annihilation [7, 9, 10], deeply inelastic electron-proton
collisions [51] and proton-proton collisions [16–18].

In this paper, we complete the computation of the two-loop V → qq̄g helicity amplitudes
by deriving the previously missing pure-singlet axial-vector contributions. Our calculation is
enabled by the construction of a new four-dimensional tensor basis [25, 26] for the V → qq̄g

amplitudes, which avoids the introduction of evanescent tensor structures and allows a
consistent application of the Larin scheme for axial couplings in dimensional regularization
in the computation of the associated form factors. In this new basis, we rederive the non-
singlet helicity amplitudes at two loops, confirming the earlier results [5, 6] and explicitly
demonstrating the equivalence of vector and axial-vector amplitudes in the non-singlet case,
after renormalization and IR factorization.

In the pure-singlet axial-vector amplitudes, the vector boson couples to an internal
quark loop. These amplitudes are affected by the axial anomaly, which cancels in the
electroweak Standard Model upon summation over weak isospin doublets. We compute the
two-loop pure-singlet axial-vector form factors, separately for massless internal quarks and in
a large-mass expansion for massive internal quarks, and recovering in both cases the correct
universal divergent behaviour of the axial anomaly. Subleading terms in the large-mass
expansion are also computed to demonstrate the internal consistency of the approach. The
combination of massless and massive internal quarks describes the pure-singlet axial-vector
contribution from top-bottom mass splitting.

By combining our newly derived two-loop pure-singlet axial-vector amplitudes with
the other pure-singlet contributions that contribute at the same order [19–21], it will now
be possible to consistently compute the axial-vector pure-singlet contributions to V+jet
production at NNLO. Moreover, in combination with the recently derived three-loop pure-
singlet axial-vector quark form factors [45, 52], these results can be extended to differential
cross sections in Z boson production at N3LO.

Besides their potential relevance for differential lepton pair distributions in Z and
Z+jet production processes at hadron colliders, the pure-singlet axial-vector contribution
could also have an impact on three-jet production observables at e+e− colliders, especially
on the event orientation [53] and on oriented event shapes derived from it.
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