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ABSTRACT 

The present paper aims at improving the efficiency of the robustness analyses of flight control laws with respect to 

conventional techniques, especially when applied to vehicles following time–varying reference trajectories, such as in an 

atmospheric re-entry. A nonlinear robustness criterion is proposed, stemming from the Practical Stability framework, which 

allows dealing effectively with such cases. A novel approach is presented, which exploits the convexity of linear time 

varying systems, coupled to an approximate description of the original nonlinear system by a certain number of its time-

varying linearizations. The suitability of the approximating systems is evaluated in a probabilistic fashion making use of the 

Unscented Transformation technique. The method effectiveness and potentials are ascertained by application to the 

robustness analysis of the longitudinal flight control laws of the Italian Aerospace Research Center (CIRA) experimental 

vehicle USV. 

1 INTRODUCTION 

A general problem that arises during the design phase of an aerospace system and when verifying the control performance 

and stability robustness is to assess vehicle compliance with a set of mission requirements, in face of uncertain parameters 

ranging in given subsets. In particular, during the Flight Control Laws (FCL) design and verification phases, robustness 

analyses are frequently required in order to drive the FCL refinement process. In these cases, it is useful to estimate the 

uncertainty ranges that guarantee compliance to a requirement. This allows, for instance, establishing the limiting operating 

conditions for an FCL candidate, or meaningfully selecting a limited set of worst cases for the control design upgrade, 

thanks also to a simpler understanding of the underlying physics and the effects that these uncertainty combinations produce 

on the trajectory. The present paper deals with the problem of analyzing the robustness with respect to parametric 

uncertainties of FCL for vehicles performing an atmospheric re-entry. This is a challenging application for robustness 

analyses, because, among others, of stringent requirements on the trajectories that can be safely flown, and of significant 

uncertainties on the design parameters, most notably on aerodynamic coefficients. 

State-of-the-art robustness analysis techniques mainly exploit the possibility of describing the nonlinear system dynamics 

applying the small perturbation theory around pre-defined stationary equilibrium points. However, given the unsteady 

nature of the re-entry trajectory, the extended range of flight regimes, the large uncertainty and disturbances ranges, the 

vehicle trajectory can be poorly represented assuming trimmed stationary flight or quasi-steady maneuvers, which calls for 

different approaches. In addition, in these applications, uncertain perturbations that do not vanish on the system reference 

trajectory are typically present. This implies that the classical concept of stability of equilibrium points cannot be applied, 

and the system robustness is better analyzed in an input-output setting [1]. 

Presently, when analyzing a re-entry mission, Monte Carlo based simulations are customary used with the drawback to not 

get useful information for vehicle or control system design refinement and or modification, but giving only a global 

assessment of the system compliance to a requirement, assuming pre-defined statistic characterization of the uncertain 

parameters (which are not always available).  
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For these reasons, Monte Carlo techniques are not suited to perform robustness analyses in the early phases of the FCL 

design cycle, where it is essential to provide information to support the design refinement process. The customary employed 

approach in this framework is an extension of LTI systems – based robustness analysis techniques also to these time-

varying applications, making use of frozen-time linearization theory. However, frozen-time linearization has severe inherent 

limitations [2], and, as non-vanishing uncertainties are taken into account, this approach lacks coherence. This implies that 

even an effective LTI–based robust stability analysis approach can deliver only indicative results, often heavily 

conservative, when used in the context of the considered applications. Therefore, previously unidentified criticalities or 

excessively conservative design choices can emerge in the final stages of the FCL design and verification loop, calling for 

additional time-consuming iterations. This results into an inefficient design process, in which extensive nonlinear 

simulations and physical phenomenon understanding are continuously required to support the robustness analyses results, as 

in the Space Shuttle case [3]. 

A novel approach to robustness analysis in the uncertain parameters space is presented, aimed at improving the efficiency of 

the design upgrade process with respect to conventional techniques, especially when applied to re-entry applications. This is 

done by delivering feedback on the causes of requirement violation for supporting the FCL design refinement, and thus the 

approach is intended to be used before robustness is finally assessed with MC analysis. To this end, the robustness analysis 

problem is formulated as determining the subset of the uncertain parameters domain in which a criterion translating mission 

requirements is matched. This allows estimating the uncertainty ranges that guarantee compliance to such requirements. The 

practical stability concept [4] is proposed as a robustness criterion, which allows handling rigorously re-entry applications 

peculiarities. However, no well-established approaches exist for the practical stability analysis of a nonlinear system. 

Current methods for analyzing the practical stability property suffer of significant drawbacks when considered from an 

applicability perspective. Indeed, examples of their application in cases of practical interest within the robustness analysis 

context are quite scarce.  

In a previous work by the authors [5], this robustness analysis problem was approached by combining practical stability 

analysis methods for Linear Time Varying (LTV) systems with an approximate description of the original nonlinear system 

by a certain number of its time-varying linearizations. However, determination of which time-varying linearizations were 

appropriate for approximating the nonlinear system was found to be an intractable problem, and the approximation was thus 

performed heuristically. The present paper advances the previous work by employing probabilistic techniques to avoid 

introducing heuristic assumptions. In particular, suitability of the LTV approximating systems is evaluated in a probabilistic 

fashion making use of the Unscented Transformation technique [6]. Then, the practical stability analysis is performed by 

means of a deterministic approach exploiting the convexity–preserving nature of LTV systems. As a result, we obtain a 

hybrid probabilistic – deterministic approach, capable of solving the robustness analysis problem with no heuristic 

assumptions. The method effectiveness and potentials are ascertained by application to a problem of practical engineering 

interest, within the framework of the Italian Aerospace Research Center (CIRA) experimental vehicle USV [7]. 

2 PROBLEM SETTING 

In the following, we briefly recall the robustness analysis problem setting and the practical stability criterion. For a more 

detailed description, the interested reader is referred to [5]. 

In order to provide a flight dynamics description suitable to winged vehicles performing an atmospheric re-entry, let us 

consider the following dynamical system: 

( ) ( ), , , ,x f t x y g t xπ π= =  (1) 

where x∈ℜn is the state vector, y∈ℜm is the output vector, f(·) is the nonlinear dynamics function, g(·) is the output function, 

and π is the vector of parametric uncertainties. Let us assume to have a finite number p of parametric uncertainties, with 

zero nominal value, and that the uncertainties are enclosed in a bounded set Π ⊆ ℜp. Dependency on an input signal u(·) is 

taken into account within the f(·) and g(·) functions. The above model is well suited to represent the typical closed-loop 

augmented dynamics of an atmospheric re-entry vehicle. For instance, the input signal u(·) can describe the FCL 

conventionally used for atmospheric re-entry applications, i.e. a gain-scheduled inner-loop PID control scheme coupled with 

a time-varying guidance law, possibly dependent on the system state as well. In this case, indeed, the gain scheduling can be 

taken into account by the dependency on the state variables (and time if needed), and the PID action by dependencies on the 

state, on its time integral (which adds up to the open-loop system’s state) and derivative, respectively. 

Given the applications we wish to describe, we refer to time-varying reference trajectories rather than stationary operating 

conditions. This could be due to the lack of stationary equilibrium solutions for system (1), as in the case of an un-powered 

re-entry vehicle in steep gliding flight. In addition, these trajectories are usually defined on a finite-time domain, which we 

will explicitly take into account by assuming that t∈[0,T], where the initial epoch is taken equal to zero for simplicity and T 
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is a finite positive real number. The reference trajectory, which is denoted with the ~ superscript, is thus time varying on a 

compact time domain, and satisfies the following equations. 

( ) ( ) [ ]0 0
: , ,0 0,

t
x t x f x d t Tτ τ= + ⋅ ∀ ∈∫� � �  (2a) 

( ) ( ) [ ]0 0
: , ,0 0,

t
y t y g x d t Tτ τ= + ⋅ ∀ ∈∫� � �  (2b) 

The common approach to determine system (1) robustness is to analyze the uncertainties effect in modifying the system 

dynamics around the reference trajectory. It is thus convenient to rearrange the system dynamics in terms of variations with 

respect to such trajectory. The resulting variations dynamics, obtained as the difference between the nominal and actual 

dynamics, are nonlinear, time-varying on a bounded time domain, and admit a stationary equilibrium point at the origin in 

nominal conditions. This manipulation of the system’s equations introduces a fictitious time-variance induced by the 

reference trajectory, which becomes an equilibrium point for the new representation. In this way, one can define robustness 

criteria based on the classical Lyapunov stability property of equilibrium points. However, this approach cannot be always 

extended to analyze the system robustness to uncertainties. More precisely, the persistency of the variations system 

fictitious equilibrium point with respect to nonzero uncertainties is a critical point. When nonzero uncertainties induce 

perturbations on the dynamics that modify the equilibrium point, denoted as non-vanishing in the open literature [1], 

robustness criteria based on the stability of equilibrium points cannot be applied. In these cases, the system robustness shall 

be analyzed in an input-output setting. We emphasize that this case typically occurs when analyzing the longitudinal 

dynamics of re-entry vehicles. For instance, a nonzero uncertainty on the drag coefficient causes a change of the system 

trajectory, thus inducing a non-vanishing perturbation on the variations system dynamics. 

The nonlinear robustness criterion proposed in the present work is based on the Practical Stability and/or Finite-Time 

Stability concepts, whose detailed description can be found in [4],[8]. This type of stability requires only the inclusion of the 

system trajectories in a pre-specified subset of the state space, possibly time-varying, in face of bounded initial state 

displacements and disturbances. As opposed to the classical Lyapunov stability concept, which is qualitative in nature, it 

does not require the existence of any equilibrium point, and is independent from Lyapunov stability, in the sense that one 

neither implies nor excludes the other. The practical stability criterion is inherently well suited to the applications of 

interest. Indeed, it allows dealing with non-vanishing uncertainties, to take explicitly into account system (1) time domain 

finiteness, and to use robustness criteria directly linked to the original mission or system requirements, which are typically 

expressed in terms of trajectory tracking performances. Indeed, the latter can be easily enforced by requiring the inclusion of 

the system trajectories in a pre-specified time-varying subset of the state space determined by the tracking requirements, to 

which we refer as the admissible solutions tube, SR(t). 

In order to simplify the criterion formulation, and because the main focus of the present paper is on addressing the 

uncertainties effects, let us assume the initial state to be perfectly known and equal to the reference one. In other words, the 

perturbed output trajectory y(t,π) is defined as a trajectory of system (1) output that starts at t = 0 in y(0) = y0, under the 

constant input π. The robustness criterion is thus described as a Boolean property P, being true when the criterion is met. 

( )
( ) ( ) [ ]

[ ] ( ) ( )
R

R

1 ; 0,

0 0, : ;

y t S t t T
P

t T y t S t

π
π

π

 ∈ ∀ ∈
= 

∃ ∈ ∉
 (3) 

In a FCL design context, a valuable information is to distinguish the combinations of uncertain parameters within Π for 

which the property holds, from those for which the property is not verified (i.e. is false). For instance, it allows for global 

coverage in the uncertainties domain of the FCL performance, as opposed to classical worst-case analysis that identifies 

only a limited number of points in Π. This in turn aids the FCL upgrade by simplifying the physical understanding of the 

causes for poor performance. With this in mind, the FCL clearance task is stated as determining the set ΠAdm, subset of Π, 

which is made of all the “admissible” uncertainties, that is, all uncertainties satisfying the robustness criterion. 

( ){ }: 1
Adm

Pπ πΠ = ∈ Π =  (4) 

In this setting, the robustness analysis task may be viewed as solving the following problem. 

Problem 1. Given system (1), a bounded set Π ⊆ ℜp such that π ∈ Π, a time-varying compact set SR(t) (admissible solutions 

tube), and the property P (3), determine the set ΠAdm (4). 

3 SOLUTION APPROACH 

In order to simplify Problem 1 solution, we introduce the following restricting assumptions. 
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Assumption 1. The functions in Eq.(1), f(·),and g(·), are differentiable in t, x and π over relevant domains. 

Assumption 2. The unknown parameters range in a p-dimensional hyper-rectangle Π. 

[ ]1 1: , .. ,
p p

π π π π Π = × ×    (5) 

Assumption 3. The required solutions tube is an m- dimensional hyper-rectangle for all [ ]0,t T∈  

( ) ( ) ( ) ( ) ( ): , .. ,
R 1 R 1 R m R m R

S t S t S t S t S t   = × ×     (6) 

Various approaches exist being capable to deal with the Practical Stability analysis of a nonlinear dynamical system. The 

most prominent are based either on the definition of Lyapunov-like functions (see [8] and the references therein), or on the 

positively invariance of a set [9]. Even though a wide literature exists concerning theoretical results on practical stability, all 

these approaches suffer of significant drawbacks when considered from an applicability perspective, including cases where 

the system’s dynamics is linear, although time-varying. Indeed, the abundance of theoretical results on Practical Stability 

analysis methods it is not balanced by examples of their application in cases of practical interest, at least within the 

robustness analysis context, which are quite scarce. 

In the following, an original approach has been developed, inspired by the “hybridization” approach, which has been 

recently proposed for the performance verification of nonlinear systems [10]. The essence of the hybridization approach is 

to study a complex system by approximating it with simpler systems, for which well-assessed analysis tools exist, and to 

take into account the approximation error in the problem solution. This is done in the present context by substituting the 

nonlinear vehicle dynamics with numerically-generated time-varying linearizations in off-nominal conditions. Then, the 

LTV systems’ practical stability is assessed over a whole uncertainty region, by performing numerical simulations only at 

suitably selected uncertainty combinations and exploiting the convexity preservation of its trajectories. 

More precisely, let us consider a partition of the uncertainties domain, {Πk}, such that each block Πk is hyper-rectangular as 

well. We then define a collection of LTV systems, each one approximating the nonlinear system in a single block Πk. In 

particular, each LTV system is obtained linearizing the nonlinear system around its trajectory under the geometrical center 

of Πk, which we denote as πk
0. The corresponding nonlinear state and output trajectories are denoted as xk

0 and yk
0 as well. 

The equations that describe the dynamics of the LTV system defined on the generic Πk (xLk and yLk denote the LTV’s state 

and output variables, respectively) are thus: 

( ) ( ) ( ) ( )0 0 0

Lk k k Lk k k k
x x A t x x G t π π= + ⋅ − + ⋅ −� �  (7a) 

( ) ( ) ( ) ( )0 0 0

Lk k k Lk k k k
y y C t x x D t π π= + ⋅ − + ⋅ −  (7b) 

where the Ak, Gk, Ck, and Dk matrixes are obtained applying first order expansion of the nonlinear functions in Eq. (1) 

around xk
0, πk

0. We can then define a function on the whole uncertain parameters domain Π that collects all the output 

trajectories of the approximating LTV systems, i.e. an yL:[0,T]×Π → ℜm, such that yL(t;π):= yLk(t;π), for π∈Πk. The error 

made in approximating the nonlinear system by the LTV ones is quantified by means of the weighted L∞ norm distance 

between the two trajectory functions: 

( ) ( ) ( ): , ,
b

Ld y t y tπ π π
∞

= −  (8) 

The main idea that allows shifting the robustness analysis problem to the LTV systems is to find a partition {Πk}Lin such that 

the approximation error is below a pre-specified error tolerance ε in all Π: 

{ } ( ): max
k Lin

d π ε
Π

Π ≤  (9) 

At this point, reducing the admissible solutions tube of the maximum error made in approximating the nonlinear system, the 

robustness analysis problem may be solved on the approximating LTV systems. More precisely, denote as Bε the closed ball 

in ℜ m with respect to the above norm, with radius equal to ε, denote with the ⊕ symbol the Minkowski sum of two sets, and 

define a reduced admissible solutions tube, obtained by shrinking appropriately SR(·). 

( ) ( ) ( ) [ ]: 0,R R RS t S t B S t t Tε
′ ′ ⊕ = ∀ ∈  (10) 

The S′R(·) complying to Eq.(10) can be easily determined since SR(t) is hyper-rectangular at each time epoch. In this case, 

being Bε hyper-rectangular as well by definition, S′R(·) can be obtained simply by component-wise difference of SR(·) and Bε.  

It is straightforward to verify that, if yL is computed on {Πk}Lin, the following holds: 
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( ) ( ) [ ] ( )R; 0, 1Ly t S t t T Pπ π′∈ ∀ ∈ ⇒ =  

Thus, if Problem 1 is solved on such a collection of LTV systems using S′R(·) instead of SR(·), one can obtain a conservative 

approximation of ΠAdm, in the sense that the computed admissible region will be included in the actual ΠAdm. From the 

previous discussion, it is clear that the amount of conservativeness in estimating ΠAdm is linked to the error tolerance ε, 

decreasing as it decreases. 

Summarizing, the above approach requires to: 

• Find a partition {Πk}Lin in whom the nonlinear trajectories are well-approximated, as previously discussed, by those of 

its linearizations (7) 

• Solve Problem 1 on the LTV systems, reducing the admissible solutions tube by Eq.(10) 

The next sections discuss these two points separately. 

3.1 Determination of {Πk}Lin 

The partition in which the approximation error function d(·) is below the linearization threshold ε is determined exploiting 

the differentiability of the nonlinear system’s function. In particular, since  

( ) ( )
0

lim ; ; 0
k

b

Lky t y t
π π

π π
∞→

− =  

Then, for any πk
0 and any ε > 0, it will exist a sufficiently small Πk centered on πk

0, such that the approximation error 

function d(·) is smaller than ε on Πk. 

Following this observation, we propose to determine the desired partition {Πk}Lin by repeatedly shrinking the Πk sets until 

the approximation error is below the tolerance. This is obtained by recursively applying an isotropic bisection technique. 

More precisely, the isotropic bisection procedure splits a single p-dimensional hyper-rectangle in 2p hyper-rectangular 

subsets, collectively exhaustive and mutually exclusive with respect to the “father” set. These “sons” are generated bisecting 

in each of the p dimensions the father hyper-rectangle’s edges. This procedure is recursively applied on a block–wise base, 

in order to provide a somehow adaptive {Πk}Lin partition at the end of the whole process. More precisely, only the subsets Πk 

for which the approximation error is found to be higher than ε are further bisected, thus avoiding to refine the regions in the 

uncertain parameters space in which the nonlinear system is already “well” linearized. The technique that allows 

determining the value of the approximation error on a hyper-rectangular subset Πk is described in the following section. 

3.1.1 Evaluation of Nonlinear Trajectories Approximation Error 

The major challenge in determining a partition suitable for approximating the nonlinear system trajectories with those of its 

time-varying linearizations resides in the evaluation of the d(·) function upper bound over Πk, i.e. in determining if for all π 

in a given hyper-rectangle Πk the distance between nonlinear and linear trajectories is within the error tolerance. Few results 

exist in the open literature that allow relating the time responses of a nonlinear system to those of its linearization by 

quantitative means (e.g. [11], [12]). These approaches conservatively bound from above a certain measure of the trajectories 

distance by maximizing some nonlinear time-varying function over a vector space. They thus either solve an optimization 

problem, with related computational complexity, or require prior knowledge of the maximum bound, such as the Lipschitz 

constant [10] or the maximum bound of second order derivatives [10],[11]. The latter methods, however, provide bounds on 

the trajectory distance that are typically exponentially increasing with time. This implies that in practice they can be used 

for time horizons of limited duration w.r.t. the system time-scales, which is not the case of re-entry applications. Alternative 

approaches have been proposed, which estimate the approximation error introducing some heuristics. In [13], the linear 

system is considered a valid approximation within a norm-ball, whose radius is fixed by heuristics depending on the linear 

trajectory characteristics. In [5], the approximation error over a polytope in the parameters space is estimated by its 

maximum value over the polytope’s vertices, assuming that the polytope is sufficiently smaller than the scale at which the 

system exhibits significant nonlinear behavior so that the maximum error always occurs in a vertex. 

In the present paper, we propose to evaluate the approximation error by probabilistic methods. In particular, fictitiously 

introducing a statistical description of the uncertain parameters in the generic Πk, we accept the risk of the approximation 

error being higher than the tolerance in a subset of Πk having small probability measure. Let us denote, for the sake of 

brevity, as dk(·) the restriction of the d(·) on Πk. We consider the nonlinear system as well approximated in Πk if the risk of 

dk(·) being higher than the error tolerance is smaller than a threshold, which we fix to 6%, that is: 

( ){ } { }: Pr 0.06k k k k Lin
d π εΠ > ≤ ⇒ Π ∈ Π  (11) 
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Without introducing any assumption on the probability distribution of dk(·), we can then use the one-sided Chebyshev 

inequality (given dk(·) positiveness) to translate Eq.(11) in: 

[ ] [ ] { }: E 4 Vark k k k k Lin
d d εΠ + ≤ ⇒ Π ∈ Π  

where E[dk] and Var[dk] are the mean and variance of dk(·). In order to determine these values, we use the Scaled Unscented 

Transformation (SUT), first introduced in [14], to which we refer the interested reader. The unscented transformation 

consists in estimating the mean and covariance of a nonlinear function f, by computing the mean and covariance of the 

discrete set of points obtained propagating a set of deterministically chosen points through the nonlinear function f. 

Let us consider a generic hyper-rectangle Πk, [ ]1 1
: , ... ,k k k pk pkπ π π π Π = × ×   . We fictitiously assume π to be uniformly 

distributed over Πk. The probability density function Uk(π) is thus: 

( ) 1

1 if
:

0 otherwise

p

ki k

ik

l
U

π
π =


∈ Π

= 



∏
 

where lki stands for the linear length of Πk in each principal direction, i.e. :ki ki kil π π= − . The resulting mean and covariance 

matrix are: 

0

k k
E π=  ; { }2 2

1

1
Cov ,...,

12
k k kp

diag l l= ⋅  

Using the SUT, we may estimate dk(·) mean and variance (since it is a scalar function). According to [14], we choose a 

series of 2p+1 points Θki in Πk, symmetrically distributed around the mean πk
0, obeying the following relationships: 

0 0ki k iπΘ = =  

( )( )0 Cov 1,...,
ki k k

i

p i pπ λΘ = + + =  

( )( )0
Cov 1,..., 2ki k k

i p

p i p pπ λ
−

Θ = − + = +  

Where λ = α2(p+κ) – p, α and κ are tunable parameters, and ( )( )Covk
i

p λ+  stands for either the row or the column of 

such matrix, depending on the square root used to compute it. Each point has an associated weight for computing the mean 

and variance of the dk(·) function, and the first point Θk0 has two weights, one for computing the mean and one for the 

variance. Denoting with Wi
(m) the weights for computation of E[dk] , and with Wi

(c) the weights for computation of Var[dk], 

the following hold. 

( ) ( )0

m
W pλ λ= +  ; 

( ) ( ) ( )2

0 0 1
c m

W W α β= + − +  

( ) ( ) ( )1 2 1,..., 2
m c

i iW W p i pλ= = + =    

The mean and variance of the dk(·) function can then be estimated as the weighted average and outer product of the 

transformed points: 

[ ] ( ) ( )
2

0

p
m

k i k ki
i

E d W d
=

= Θ∑  

[ ] ( ) [ ] ( ){ }
2 2

0

p
c

k i k k ki
i

Var d W E d d
=

= − Θ∑  

The SUT has three tunable parameters, α, β, and κ. The latter has been fixed equal to zero, following [15]. β is a non-

negative weighting term which can be used to incorporate knowledge of the higher order moments of the distribution. 

Preliminary numerical analysis have shown that in our problem setting β=0 delivers the best estimates. At last, α controls 

the “size" of the Θ points distribution and should be 0≤α≤1. We choose 3 pα =  in order to have the Θki points in the 

center of Πk facets. This choice allows for sharing some computations between adjacent Πk sets, and thus to reduce the 

overall computational load. 
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3.2 Solution of Problem 1 on an LTV system 

Consider a generic hyper-rectangular Πk⊆Π. Πk is a convex polytope having 2p vertices π(ν), i.e. admits the following vertex 

representation: 

( )
2 2

1 1

, 0 , 1
p p

p

k k k k k

ν
ν ν ν

ν ν

π π λ π λ λ
= =

 
Π = ∈ℜ = ≥ = 

 
∑ ∑  

Consider the LTV system obtained by linearization of the nonlinear system (1) around its trajectory under πk
0 (Eq.(7)). 

Thanks to the superposition principle, any solution of the LTV system under a generic π in Πk is a convex combination of 

the solutions under all the π(ν). Furthermore, the λkν coefficients identifying the generic solution are equal to the ones 

identifying π in Πk. All the output trajectories yLk(t,π), with π ranging in Πk, thus belong to the following set (tube) SLk(t). 

( ) ( );k Lk Lky t S tπ π∈ Π ⇒ ∈  , 

( ) ( ) ( ) ( )( )
2

1

2

1

, , , ,

0 , 1

p

p

m

Lk Lk Lk k Lk k

k k

S t y t y t y t
ν

ν
ν

ν ν
ν

π π λ π

λ λ

=

=


= ∈ℜ =



≥ = 



∑

∑

 

As a consequence, the knowledge of the 2p vertex trajectories yLk(t,πk
(ν)) allows to completely determine the region in which 

all the other trajectories are included. In this way, the system time response under any π in Πk is completely characterized by 

a limited (and known a priori) number of trajectories, which can be obtained by numeric simulation. This allows obtaining a 

solution to Problem 1.  

Consider the half-space representation of the reduced admissible solutions tube S′R(·) (that can easily be obtained because 

S′R(·) is hyper-rectangular by assumption). 

( ) ( ){ }m A B

R R R
S t y S y S t′ = ∈ℜ ⋅ ≤  

Where (
m m
I
×

 stands for the m by m eye matrix): 

( )
T

A

R
m m m m

S I I
× ×

= −  , [ ] 2 1: 0,B m

R
S T ×→ ℜ  

Let us define the Boolean property Pk, such that it is defined only if the property P of Eq.(3) is globally definite (either 0 or 

1) on Πk : 

( )

( )

1 1
:

0 0

k

k

k

P
P

P

π π

π π

= ∀ ∈ Π
= 

= ∀ ∈ Π
 (12) 

Given the convexity preserving nature of the LTV trajectories under constant inputs, the following hold, where [ ]
i

⋅  denotes 

the i-th row of a matrix: 

[ ]
( )( ) ( )

0, , 1,.., 2

, 1

p

A B

R Lk k R k

t T

S y t S t P
ν

ν

π

∀ ∈ ∀ =

⋅ ≤ ⇒ =
 (13a) 

[ ]
( )( ) ( )

0, , 1,.., 2 : 1,.., 2

, 0

p

A B

R Lk k R ki i

t T i m

S y t S t P
ν

ν

π

∃ ∈ ∃ = ∀ =

   ⋅ > ⇒ =   
 (13b) 

Thus, by examining only the 2p vertex trajectories yLk(t;π(ν)), one can determine if the robustness criterion P is satisfied 

globally on a given hyper-rectangular region Πk. In case Pk=0, the robustness criterion is violated for all the uncertainties in 

Πk, which is so identified as a region in which the system does not comply to the robustness criterion. At last, in case none 

of the conditions (13) is satisfied, this implies that the robustness criterion may hold only in a subset of Πk. In this case, we 

can further bisect Πk using the technique described in section 3.1, until either we find subsets in which P is globally definite, 

or we reach a minimum allowed measure of the Πk sets, which is a maximum resolution at which the Π domain is analyzed. 
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Thus, Problem 1 is solved exactly for the LTV approximating systems defined on {Πk}Lin, and, due to the error tolerance ε, 

conservatively for the nonlinear system (1). 

4 APPLICATION CASE 

In order to ascertain the potentials of the proposed methodology, this section shows results obtained on a problem of 

practical engineering interest, relative to one of the test flights foreseen by the Unmanned Space Vehicle (USV) program, 

pursued by the Italian Aerospace Research Center ( CIRA ). In particular, it refers to the Dropped Transonic Flight Test 

(DTFT) [7], in which the FTB1 vehicle, developed as part of the USV program, is released from a stratospheric balloon at 

an altitude of 20 km, and performs an un-powered gliding flight reaching the transonic regime. The mission ends by 

deploying a parachute at a given Mach number, in order to safely splashdown in the Tyrrhenian Sea.  

We apply the previously described method to perform the robustness analysis of the vehicle’s longitudinal FCL. To this 

end, a purely longitudinal flight dynamics nonlinear model is considered, fed back by a gain scheduled PID longitudinal 

flight control loop itself commanded by a time-varying guidance law, and subject to uncertainties in the aerodynamic 

coefficients. Details of the model can be found in [16], and will be here omitted for brevity. 

A detailed description of the FTB1 vehicle geometric and structural data can be found in [18]. According to the complete 

aerodynamic dataset, which is presented in [19], the lift, drag and pitching moment coefficients are given as the sum of a 

nominal and an uncertain aliquot. The former, obtained by interpolation of data given at discrete points of the flight 

envelope, foresees a nonlinear dependency on angle of attack α, Mach number M, altitude h, pitch rate q, and symmetric 

deflection of the elevons δe, which is the primary longitudinal control effector. Concerning the uncertain aliquot, only the 

three most influential uncertain parameters are herein taken into account. In particular, we consider bias uncertainties in 

drag and pitching moment coefficients along with the uncertainty in the effect of the elevons symmetric deflection on the 

pitching moment coefficient. The uncertainties influence on the relevant aerodynamic coefficient is modeled by means of 

non-dimensional scaling functions that depend on the Mach number. Following the current industrial practice, the scaling 

functions are taken equal to the maximum expected uncertainty range at each Mach number, also allowing normalizing to [-

1,1] the uncertain parameters ranges. The resulting aerodynamic coefficients functional dependencies are given in Eqs. (14), 

where the nom superscript denotes the nominal aerodynamic coefficient, and Fig. 1 shows the scaling functions profile. 

( ), , , ,nom

L L e
C C M h qα δ=  (14a) 

( ) ( )0 0, , ,nom

D D e D D
C C M h s Mα δ π= + ⋅  (14b) 

( ) ( )

( )
0 0, , , ,nom

m m e m m

e m m

C C M h q s M

s Mδ δ

α δ π

δ π

= + ⋅ +

⋅ ⋅
 (14c) 

 

Fig. 1 Scaling functions for aerodynamic uncertainties modeling. 
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After the first few seconds of the initial drop phase, in which the elevons do not have sufficient command authority due to 

the very low dynamic pressure, the vehicle dynamics are augmented by a PID FCL, arranged in a cascade structure with 

feedback on pitch rate and angle of attack. The FCL gains k are scheduled with respect to the dynamic pressure throughout 

the flight profile. The time-varying guidance law in angle of attack αref, shown in Fig. 2, commands the augmented 

dynamics. The overall feedback action can be expressed as follows. 

( )3 1e refk k qδ α α ξ = − + −   ; ( )1 2 refk kξ α α= −�  (15) 

1 10 1s
k k k q∞= +  ; 

2 20 2s
k k k q∞= +  ; 

3 30 3s
k k k q∞= +  (16) 

 

Fig. 2 Angle of attack reference guidance law 

 

Introducing the aerodynamic coefficients model of Eq. (14) in the open-loop longitudinal dynamics, and substituting Eq. 

(15) for δe, we can recast the augmented vehicle dynamics in the form of Eq.(1), in which ( )
T

x V q h rα θ ξ= , 

( )
T

e
y Mα δ= , ( )0 0

T

D m mδπ π π π= , where V stands for the air relative velocity, θ for the pitch angle, and r for the 

flown range. 

The presented method has been applied to analyze this nonlinear system up to T = 73 sec., which is representative of the 

overall mission duration. The initial value of the system state is equal to x0 := ( 0.01 m/sec.; 0 deg.; –90 deg.; 0 deg/sec.; 

20000 m; 0 m; 0 deg./sec.)T. Three robustness criteria are enforced, based on mission requirements and FCL performance 

metrics. The FCL is required to track the reference angle of attack time-history with at most a 2 deg. error, as well as to 

avoid issuing commands to the actuation system beyond its maximum capabilities. The latter requirement is enforced 

requiring δe to remain within [-25, 25] deg. At last, the Mach number is limited from above and below in the transonic 

region due to the mission objectives. These three robustness criteria define a time-varying hyper-rectangular admissible 

solutions tube in a very straightforward manner, whose one-dimensional projections in the three output variables are shown 

in Fig. 3. 
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Fig. 3 One dimensional projections of SR (in white) 

 

A candidate FCL tuning, determined by means of conventional LTI-based synthesis techniques, is now analyzed using the 

proposed approach. Its gains vary according to Eq. (16) with k10 = 1 sec.-1 ; k1s = 0; k20 = –3,77·10 –1 sec.–1 ; k2s = 4,55·10 –4 

m·sec.·kg –1 ; k30 = 3,01·10 –2 sec. ; k3s = –4,03·10 3 kg·sec. –1·m –1. The linearization phase results are collected in Fig. 4, 

showing {Πk}Lin, the partition into which the uncertainties domain Π has been divided to obtain a meaningful 

approximation. In each Πk belonging to {Πk}Lin the nonlinear dynamics are numerically linearized around their trajectory 

under 0
k

π . In this specific application, the nonlinear system is successfully approximated in all Π within the allowed 

resolution. Fig. 5 collects the collects the robustness analysis results, in which three different areas can be identified. The 

gray one including all the subsets Πk in which the criterion is cleared, i.e. Pk = 1. Given the previous discussions, this region 

conservatively approximates ΠAdm. The white one is instead made of all the subsets with the minimum allowed size, in 

which no definite clearance information can be obtained without further partitioning. At last, the black region is made of all 

the subsets Πk in which the criterion is not cleared, pointing out a substantial subset of Π in which the system robustness 

does not satisfy the criterion.  

 

Fig. 4 Uncertainties domain partition for system linearization – {Πk}Lin 
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Fig. 5 Robustness criterion mapping in Π 

 

As previously emphasized, one of the main advantages of the proposed approach is the capability to support the physical 

understanding of all the causes for unsatisfactory FCL robustness within Π. One outcome of the analysis that is instrumental 

in achieving this objective is the capability to estimate conservatively the dispersion of the nonlinear trajectories. More 

precisely, all the nonlinear trajectories resulting from a given continuous region within the uncertainties domain may be 

enclosed by a tube computed using information only in a finite number of suitably selected points. Indeed, given a generic 

sub-partition {Πk}, the nonlinear system solutions tube arising from all the uncertainties combinations in {Πk} is included in 

the Minkowski sum between the tolerance ball Bε and the union of all the tubes of the relevant blocks (see section 3). The 

latter, being a union of polytopes, is itself included in the convex hull of all the vertex trajectories of the tubes. In addition, 

since convexity is preserved under projection, these convex hulls and the Minkowski addition may be computed directly in 

any low dimension regardless of the output space dimension, thus requiring limited computational resources. This allows to 

efficiently build graphical representations of the nonlinear trajectories dispersion that considerably aid results interpretation. 

Indeed, Fig. 6 and Fig. 7 show the one-dimensional projections in α, M, and δe of the estimate of the nonlinear solutions 

tube for π belonging to the Πk subsets for whom Pk = 0 (that is, the black region in Fig. 5), at a series of simulation time 

epochs, along with SR.  

 

Fig. 6 Projection in α of the solutions tube estimate for Pk = 0 vs. SR. 
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Fig. 7 Projections in M and δe of the solutions tube estimate for Pk = 0 vs. SR. 

 

Whilst both the Mach number and the elevons deflection robustness criteria are matched, the angle of attack tracking 

performance is unsatisfactory. More precisely, two distinct violations are observed: one due to an excessively low angle of 

attack when entering the transonic regime, the other one due to an excessively high angle of attack when returning to 

subsonic conditions. These oscillations are both caused by a sharp decrease of the elevons efficiency in the transonic phase. 

However, because of the considerable uncertainty on the entity of this phenomenon, no dedicated feed-forward actions were 

implemented. The influence of the uncertain parameters on the two oscillations are different, because of the asymmetry of 

the α profile. In order to assess this difference, a further analysis has been performed separating the two oscillations. This 

may be achieved modifying the admissible solutions tube definition, once enforcing only the lower tracking bound on α, and 

once the higher. We emphasize that, since the results of the approximation phase do not depend on the admissible solutions 

tube, these additional analyses require performing only the property clearance phase. This does not involve any nonlinear 

simulations or numeric linearization, thus has an execution time considerably smaller than the linearization one. The new 

property clearance results are shown in Fig. 8 and Fig. 9 for the lower and higher α tracking bounds, respectively. 

 

Fig. 8 Robustness criterion mapping in Π; lower α tracking bound only. 
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Fig. 9 Robustness criterion mapping in Π; upper α tracking bound only. 

 

Results indicate that the first oscillation may extend below the α tracking requirement when a decrease in the pitching 

moment is coupled with an increase in the elevons effect on the pitching moment. These two factors are clearly predominant 

with respect to the drag bias uncertainty within the expected uncertainties ranges. On the other hand, the drag bias 

uncertainty has an effect comparable to the pitching moment bias one in affecting the post-transonic oscillation, whose 

compliance to the α tracking requirement is considerably influenced by the elevons effect on the pitching moment. It is 

evident how the physical phenomenology underlying the α tracking requirement violation in dispersed conditions is 

different for the pre- and post-transonic phases, implying that the eventual FCL design refinement should be conducted with 

regard to multiple test cases. This typical situation highlights the benefits of the proposed approach when compared to the 

optimization-based worst-case search. This, in spite of the capability of identifying the uncertainties combination yielding 

the worst value of the robustness criterion, may indeed fail to support the subsequent FCL refinement when multiple 

violations of the criterion are present, arising from different causes calling for diverse FCL refinement strategies.  

Based on the regions identified in the previous analyses, the FCL design has been upgraded by means of conventional 

techniques, yielding a modified gain tuning. In particular, the proportional gain on the angle of attack k1 has been increased 

in the early phases of flight (k10 = 2,00 sec.-1 ; k1s = -6,00·10–5), to recover the first oscillation. The post-transonic oscillation 

issues were instead relieved by decreasing the gain on the pitch rate kq in the high-dynamic pressure flight conditions (k30 = 

–2,00·10 –1 sec. ; k3s = –6,50·10 3 kg·sec. –1·m –1 ). An additional analysis, whose results are shown in Fig. 10 to Fig. 12, has 

been performed, showing that the new FCL tuning exhibits satisfactory robustness to the uncertainties taken into account. 

 

Fig. 10  Robustness criterion mapping in Π. 
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Fig. 11  Projection in α of the solutions tube estimate for π in Π vs. SR. 

 

Fig. 12  Projections in M and δe of the solutions tube estimate for π in Π vs. SR. 

 
The application presented in this section highlights the potentials of the proposed approach in supporting the FCL 

refinement process. Concerning the execution time, these results were obtained in ~12 minutes using a standard desktop PC 

equipped with a Pentium IV 2.4 GHz processor and 2GB RAM. To give a term of comparison, numerically evaluating the 

robustness criterion (3) by a brute-force approach on a uniformly spaced grid at the same resolution takes more than 4 

hours. However, it is emphasized that information delivered by the two methods is different since brute-force methods give 

results valid only in the grid nodes, thus calling for higher resolutions. On the contrary, the proposed method’s results apply 

continuously in the uncertainties domain, allowing to take advantage of relatively low resolutions. 

At last, we provide an insight of the performance of the SUT in guaranteeing that the nonlinear trajectories approximation 

error is below the desired threshold in this application case. In particular, we draw a series of N = 7000 random samples of 

π, uniformly distributed over Π. We then numerically evaluate the d(·) function on these samples, using the LTV 

approximations defined on the previously computed {Πk}Lin. The so obtained d(·) values are shown in Fig. 13, and compared 

to the error tolerance ε.  
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Fig. 13: Random evaluation of d(·) function on {Πk}Lin 

It is seen that d(·) is effectively smaller than ε in most of Π. The probability of d(·) being higher than the tolerance may be 

estimated as the ratio between the number of samples in which d>ε and the total number of samples, yielding Pr{d>ε}≈ 

0.009. These results are consistent with the 6% value that has been specified in section 3.1.1 for the risk of d(·) being higher 

than the error tolerance, and thus confirm that the SUT is adequate for evaluating the approximation error in estimating the 

nonlinear trajectories with those of its linearizations. 

 

5 CONCLUSION 

A novel approach to flight control laws robustness analysis for vehicles following time–varying reference trajectories under 

parametric uncertainties has been proposed. Main advantages with respect to conventional clearance techniques include, but 

are not limited to, coherence in the robustness criterion formulation, with a resulting higher confidence in the analysis 

results, the capability of dealing with advanced FCL, to which conventional techniques poorly apply, and a bounded, and 

reducible, amount of conservatism.  

A nonlinear robustness criterion has been developed and formulated as a Practical Stability analysis problem. A novel 

approach is pursued, which approximates the original nonlinear system by a certain number of its time–varying 

linearizations, numerically obtained by means of a recursive partitioning technique of the uncertainty domain. In particular, 

suitability of the LTV approximating systems is evaluated in a probabilistic fashion making use of the Unscented 

Transformation technique. Then, the practical stability analysis is performed by means of a deterministic approach 

exploiting the convexity–preserving nature of LTV systems. As a result, we obtain a hybrid probabilistic – deterministic 

approach, capable of solving the defined robustness analysis problem with no heuristic assumptions.  

The method potentials in increasing the efficiency of the FCL robustness analyses is addressed by application to the 

longitudinal flight control law of CIRA experimental vehicle USV. Results are presented in terms of determining the 

subsets of the expected uncertainties’ domain within which adequate performance of the augmented vehicle is verified. 

Comparison with conventional clearance methods suggests the viability of the proposed method, also in terms of sustainable 

computational load. 
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