1,032 research outputs found

    Organ Transplantation in Medical and Legal Perspectives

    Get PDF

    Search for IR Emission from Intracluster Dust in A2029

    Full text link
    We have searched for IR emission from the intracluster dust (ICD) in the galaxy cluster A2029. Weak signals of enhanced extended emission in the cluster are detected at both 24 and 70 micron. However, the signals are indistinguishable from the foreground fluctuations. The 24 versus 70 micron color map does not discriminate the dust emission in the cluster from the cirrus emission. After excluding the contamination from the point sources, we obtain upper limits for the extended ICD emission in A2029, 5 x 10^3 Jy/sr at 24 micron and 5 x 10^4 Jy/sr at 70 micron. The upper limits are generally consistent with the expectation from theoretical calculations and support a dust deficiency in the cluster compared to the ISM in our galaxy. Our results suggest that even with the much improved sensitivity of current IR telescopes, a clear detection of the IR emission from ICD may be difficult due to cirrus noise.Comment: 5 pages, 4 figures, accepted by ApJ

    An Investigation of Gravitational Lensing in the Southern BL Lac PKS 0537-441

    Get PDF
    The BL-Lac family of active galaxies possess almost featureless spectra and exhibit rapid variability over their entire spectral range. A number of models have been developed to explain these extreme properties, several of which have invoked the action of microlensing by sub-stellar mass objects in a foreground galaxy; this not only introduces variability, but also amplifies an otherwise normal quasar source. Here we present recent spectroscopy and photometry of the southern BL Lac PKS 0537-441; with an inferred redshift of z~0.9 it represents one of the most distant and most luminous members of the BL Lac family. The goal of the observations was not only to confirm the redshift of PKS~0537-441, but also to determine the redshift of a putative galaxy along the line of sight to the BL-Lac; it has been proposed that this galaxy is the host of microlensing stars that account for PKS 0537-441's extreme properties. While several observations have failed to detect any extended emission in PKS 0537-441, the HST imaging data presented here indicate the presence of a galactic component, although we fail to identify any absorption features that reveal the redshift of the emission. It is also noted that PKS 0537-441 is accompanied by several small, but extended companions, located a few arcseconds from the point-like BL-Lac source. Two possibilities present themselves; either they represent true companions of PKS 0537-441, or are themselves gravitationally lensed images of more distant sources.Comment: 13 Pages with 4 Figures; Accepted for Publication by the Astrophysical Journa

    The Properties of the Radio-Selected 1Jy Sample of BL Lacertae Objects

    Get PDF
    We present new optical and near-IR spectroscopy as well as new high dynamic range, arcsecond-resolution VLA radio maps of BL Lacs from the complete radio-selected "1 Jansky" (1Jy) sample (RBLs) for which such data were not previously available. Unlike BL Lacs from the complete X-ray-selected Einstein Medium Sensitivity Survey (EMSS) sample (XBLs), most RBLs possess weak but moderately luminous emission lines. And whereas nearly all XBLs have extended power levels consistent with FR-1s, more than half of the RBLs have extended radio power levels too luminous to be beamed FR-1 radio galaxies. In fact, we find evidence for and examples of three distinct mechanisms for creating the BL Lac phenomenon in the 1Jy sample: beamed FR-1s, beamed FR-2s and possibly a few gravitationally-lensed quasars. The v/v_max determined for the 1Jy sample is 0.614+/-0.047, which is markedly different from the negative evolution seen in the EMSS and other XBL samples. A correlation between logarithmic X-ray to radio flux ratio and v/v_max is observed across the EMSS and 1Jy samples, from negative evolution in the more extreme XBLs to positive evolution in the more extreme RBLs. There is evidence that the selection criteria chosen by Stickel et al. eliminates some BL Lac objects from the 1Jy sample, although how many is unknown. And several objects currently in the sample have exhibited strong emission lines in one or more epochs, suggesting they should be reclassified as FSRQs. However these selection effects cannot account for the observed discrepancy in XBL and RBL properties. From these observational properties we conclude that RBLs and XBLs cannot be related by viewing angle alone, and that RBLs are more closely related to FSRQs.Comment: 29 pages, 47 figures, accepted A

    Performance of three-photon PET imaging: Monte Carlo simulations

    Full text link
    We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scanning configurations are assessed. A simple formula for minimum size of lesions detectable in the three-gamma based images is derived. Depending on the contrast and total number of registered counts, lesions of a few mm size for human and sub mm for small animal scanners can be detected

    Extending the limits of globule detection -- ISOPHOT Serendipity Survey Observations of interstellar clouds

    Get PDF
    A faint I170=4I_{\rm 170}=4 MJysr1^{-1} bipolar globule was discovered with the ISOPHOT 170 μ\mum Serendipity Survey (ISOSS). ISOSS J 20246+6541 is a cold (Td14.5T_{\rm d}\approx 14.5 K) FIR source without an IRAS pointsource counterpart. In the Digitized Sky Survey B band it is seen as a 3\arcmin size bipolar nebulosity with an average excess surface brightness of 26\approx 26 mag/\square \arcsec . The CO column density distribution determined by multi-isotopic, multi-level CO measurements with the IRAM-30m telescope agrees well with the optical appearance. An average hydrogen column density of 1021\approx 10^{21}cm2^{-2} was derived from both the FIR and CO data. Using a kinematic distance estimate of 400 pc the NLTE modelling of the CO, HCO+^+, and CS measurements gives a peak density of 104\approx 10^4cm3^{-3}. The multiwavelength data characterise ISOSS 20246+6541 as a representative of a class of globules which has not been discovered so far due to their small angular size and low 100μ\mu m brightness. A significant overabundance of 13^{13}CO is found X(13CO)150×X(C18O)X(^{13}CO) \ge 150\times X(C^{18}O). This is likely due to isotope selective chemical processes.Comment: 5 pages, 3 figure

    An Excess of Mg II Absorbers in BL Lac Objects

    Get PDF
    Two new Mg II absorbers are presented (z=1.340 in S5 0454+844 and z=1.117 in PKS 2029+121), bringing the total number of Mg II systems in the 1 Jy radio-selected BL Lac sample to 10. Five of the ten absorption systems are at W > 1A; this is a factor of four to five greater than the number expected based upon quasar sightlines, and is 2.5 to 3 sigma greater than the expectation value. Interpretations of this possible excess include either that some of the Mg II absorbers might be intrinsic to the BL Lac or that there is a correlation between the presence of absorbing gas in the foreground and the nearly featureless spectra of these BL Lac Objects compared to quasars. Such a correlation can be created by gravitational microlensing as suggested by Ostriker & Vietri. The similarity between the optical spectra of BL Lacs with Mg II absorption and the spectrum of the Gamma-ray burst source GRB 970508 suggests that models of Gamma-ray bursts as microlensed AGN should be investigated.Comment: LaTeX, AASTeX, 3 figures: jy0138.eps, jy0454.eps, jy2029.eps ApJL, Accepted September 2nd, 199

    The jet power, radio loudness and black hole mass in radio loud AGNs

    Full text link
    The jet formation is thought to be closely connected with the mass of central supermassive black hole in Active Galactic Nuclei. The radio luminosity commonly used in investigating this issue is merely an indirect measure of the energy transported through the jets from the central engine, and severely Doppler boosted in core-dominated radio quasars. In this work, we investigate the relationship between the jet power and black hole mass, by estimating the jet power using extrapolated extended 151 MHz flux density from the VLA 5 GHz extended radio emission, for a sample of 146 radio loud quasars complied from literature. After removing the effect of relativistic beaming in the radio and optical emission, we find a significant intrinsic correlation between the jet power and black hole mass. It strongly implies that the jet power, so as jet formation, is closely connected with the black hole mass.To eliminate the beaming effect in the conventional radio loudness, we define a new radio loudness as the ratio of the radio extended luminosity to the optical luminosity estimated from the broad line luminosity.In a tentatively combined sample of radio quiet with our radio loud quasars, the apparent gap around the conventional radio loudness R=10 is not prominent for the new-defined radio loudness. In this combined sample, we find a significant correlation between the black hole mass and new-defined radio loudness.Comment: 35 pages, 10 figures. accepted by Ap

    Intra-Day Variability and the Interstellar Medium Towards 0917+624

    Get PDF
    The intra-day variable source 0917+624 displays annual changes in its timescale of variability. This is explained in terms of a scintillation model in which changes in the variability timescale are due to changes in the relative velocity of the scintillation pattern as the Earth orbits the sun. (see also astro-ph/0102050)Comment: 4 pages, 1 figure. Accepted for A&A Letter

    The Infrared Luminosity of Galaxy Clusters

    Full text link
    The aim of this study is to quantify the infrared luminosity of clusters as a function of redshift and compare this with the X-ray luminosity. This can potentially constrain the origin of the infrared emission to be intracluster dust and/or dust heated by star formation in the cluster galaxies. We perform a statistical analysis of a large sample of galaxy clusters selected from existing databases and catalogues.We coadd the infrared IRAS and X-ray RASS images in the direction of the selected clusters within successive redshift intervals up to z = 1. We find that the total infrared luminosity is very high and on average 20 times higher than the X-ray luminosity. If all the infrared luminosity is to be attributed to emission from diffuse intracluster dust, then the IR to X-ray ratio implies a dust-to-gas mass abundance of 5e-4. However, the infrared luminosity shows a strong enhancement for 0.1 < z < 1, which cannot be attributed to cluster selection effects. We show that this enhancement is compatible with a star formation rate in the member galaxies that is typical of the central Mpc of the Coma cluster at z = 0 and evolves with the redshift as (1+z)^5. It is likely that most of the infrared luminosity that we measure is generated by the ongoing star formation in the member galaxies. From theoretical predictions calibrated on extinction measurements (dust mass abundance equal to 1e-5), we expect only a minor contribution, of a few percent, from intracluster dust.Comment: 9 pages, 7 figures, accepted july 31st 2008 for publication in Astronomy and Astrophysics, language improved for this versio
    corecore