712 research outputs found

    Inversion of stellar statistics equation for the Galactic Bulge

    Get PDF
    A method based on Lucy (1974, AJ 79, 745) iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K-band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10 deg.>|b|>2 deg., |l|<15 deg.). The top end of the K-band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by Lopez-Corredoira et al.(1997, MNRAS 292, L15), are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M_K=-8.0 mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12 deg. in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major-minor axial ratio of the ellipsoids is found not to be constant. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc<t<3000 pc, are calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K_z is allowed to vary. From these, the total number of bulge stars is ~ 3 10^{10} or ~ 4 10^{10}, respectively.Comment: 19 pages, 23 figures, accepted in MNRA

    An improved version of the Implicit Integral Method to solving radiative transfer problems

    Full text link
    Radiative transfer (RT) problems in which the source function includes a scattering-like integral are typical two-points boundary problems. Their solution via differential equations implies to make hypotheses on the solution itself, namely the specific intensity I(tau;n) of the radiation field. On the contrary, integral methods require to make hypotheses on the source function S(tau). It looks of course more reasonable to make hypotheses on the latter because one can expect that the run of S(tau) with depth be smoother than that of I(tau;n). In previous works we assumed a piece-wise parabolic approximation for the source function, which warrants the continuity of S(tau) and its first derivative at each depth point. Here we impose the continuity of the second derivative S"(tau). In other words, we adopt a cubic spline representation to the source function, which highly stabilize the numerical processes.Comment: Accepted for publication in Astrophysics (2012, N.1

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio

    Determining the Physical Properties of the B Stars I. Methodology and First Results

    Full text link
    We describe a new approach to fitting the UV-to-optical spectra of B stars to model atmospheres and present initial results. Using a sample of lightly reddened stars, we demonstrate that the Kurucz model atmospheres can produce excellent fits to either combined low dispersion IUE and optical photometry or HST FOS spectrophotometry, as long as the following conditions are fulfilled: 1) an extended grid of Kurucz models is employed, 2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the Massa & Fitzpatrick (1999) transformation, and 3) all of the model parameters and the effects of interstellar extinction are solved for simultaneously. When these steps are taken, the temperatures, gravities, abundances and microturbulence velocities of lightly reddened B0-A0 V stars are determined to high precision. We also demonstrate that the same procedure can be used to fit the energy distributions of stars which are reddened by any UV extinction curve which can be expressed by the Fitzpatrick & Massa (1990) parameterization scheme. We present an initial set of results and verify our approach through comparisons with angular diameter measurements and the parameters derived for an eclipsing B star binary. We demonstrate that the metallicity derived from the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We find that a near zero microturbulence velocity provides the best-fit to all but the hottest or most luminous stars (where it may become a surrogate for atmospheric expansion), and that the use of white dwarfs to calibrate UV spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures. Astrophysical Jounral, in pres

    Structural properties of disk galaxies. II. Intrinsic shape of bulges

    Full text link
    (Abridged) The structural parameters of a magnitude-limited sample of 148 unbarred S0-Sb galaxies were analyzed to derive the intrinsic shape of their bulges. We developed a new method to derive the intrinsic shape of bulges based on the geometrical relationships between the apparent and intrinsic shapes of bulges and disks. The equatorial ellipticity and intrinsic flattening of bulges were obtained from the length of the apparent major and minor semi-axes of the bulge, twist angle between the apparent major axis of the bulge and the galaxy line of nodes, and galaxy inclination. We found that the intrinsic shape is well constrained for a subsample of 115 bulges with favorable viewing angles. A large fraction of them is characterized by an elliptical section (B/A<0.9). This fraction is 33%, 55%, and 43% if using their maximum, mean, or median equatorial ellipticity, respectively. Most are flattened along their polar axis (C<(A+B)/2). The distribution of triaxiality is strongly bimodal. This bimodality is driven by bulges with Sersic index n>2, or equivalently, by the bulges of galaxies with a bulge-to-total ratio B/T>0.3. In particular, bulges with n\leq2 and with B/T\leq0.3 show a larger fraction of oblate axisymmetric (or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and fewer prolate axisymmetric (or nearly axisymmetric) bulges with respect to bulges with n>2 and with B/T>0.3, respectively. According to predictions of the numerical simulations of bulge formation, bulges with n\leq2, which show a high fraction of oblate axisymmetric (or nearly axisymmetric) shapes and have B/T\leq0.3, could be the result of dissipational minor mergers. Both major dissipational and dissipationless mergers seem to be required to explain the variety of shapes found for bulges with n>2 and B/T>0.3.Comment: 16 pages, 12 figures; accepted for publication in A&

    The long Galactic bar as seen by UKIDSS Galactic Plane Survey

    Full text link
    Over the last decade there have been a series of results supporting the hypothesis of the existence of a long thin bar in the Milky Way with a half-length of 4.5 kpc and a position angle of around 45 deg. This is apparently a very different structure from the triaxial bulge of the Galaxy, which is thicker and shorter and dominates the star counts at |l|<10 deg. In this paper, we analyse the stellar distribution in the inner Galaxy to see if there is clear evidence for two triaxial or bar-like structures in the Milky Way. By using the red-clump population as a tracer of Galactic structure, we determine the apparent morphology of the inner Galaxy. Deeper and higher spatial resolution NIR photometry from the UKIDSS Galactic Plane Survey allows us to use in-plane data even at the innermost Galactic longitudes, a region where the source confusion is a dominant effect that makes it impossible to use other NIR databases such as 2MASS or TCS-CAIN. We show that results previously obtained with using the red-clump giants are confirmed with the in-plane data from UKIDSS GPS. There are two different structures coexisting in the inner Galactic plane: one with a position angle of 23.60+-2.19 deg that can be traced from the Galactic Centre up to l=10 deg (the Galactic bulge), and other with a larger position angle of 42.44+-2.14 deg, that ends around l=28 deg (the long Galactic bar).Comment: (8 pages, 14 figures, accepted for publication in A&A

    Determining Supersymmetric Parameters With Dark Matter Experiments

    Get PDF
    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of mu (and the composition of the lightest neutralino), m_A and tan beta. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, mu can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.Comment: 46 pages, 76 figure

    The use of combination therapy in pulmonary arterial hypertension: new developments

    Get PDF
    There is a strong clinical rationale for combination therapy in pulmonary arterial hypertension (PAH), as several pathological pathways have been implicated in its pathogenesis and no single agent has yet been shown to deliver completely satisfactory results. Registry data indicate that use of combination therapy is in fact common in existing clinical practice, even though support has been largely empirical or derived from small-scale observational studies. Data from large, adequately powered, randomised controlled trials of combination therapy in PAH are now emerging and suggest that combination therapy may be clinically beneficial. Studies of bosentan in combination with prostanoids and phosphodiesterase (PDE)-5 inhibitors show consistent evidence of improvements in exercise capacity compared with placebo. Similar improvements have been observed with PDE-5 inhibitors in combination with prostanoids. The appropriate timing of combination therapy requires further evaluation but goal-oriented therapy using combinations of oral and inhaled drugs has been shown to provide acceptable long-term results in patients with advanced PAH. Monitoring should be performed regularly and be based on repeatable, noninvasive, measurable parameters that have prognostic value

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
    corecore