712 research outputs found
Inversion of stellar statistics equation for the Galactic Bulge
A method based on Lucy (1974, AJ 79, 745) iterative algorithm is developed to
invert the equation of stellar statistics for the Galactic bulge and is then
applied to the K-band star counts from the Two-Micron Galactic Survey in a
number of off-plane regions (10 deg.>|b|>2 deg., |l|<15 deg.).
The top end of the K-band luminosity function is derived and the morphology
of the stellar density function is fitted to triaxial ellipsoids, assuming a
non-variable luminosity function within the bulge. The results, which have
already been outlined by Lopez-Corredoira et al.(1997, MNRAS 292, L15), are
shown in this paper with a full explanation of the steps of the inversion: the
luminosity function shows a sharp decrease brighter than M_K=-8.0 mag when
compared with the disc population; the bulge fits triaxial ellipsoids with the
major axis in the Galactic plane at an angle with the line of sight to the
Galactic centre of 12 deg. in the first quadrant; the axial ratios are
1:0.54:0.33, and the distance of the Sun from the centre of the triaxial
ellipsoid is 7860 pc. The major-minor axial ratio of the ellipsoids is found
not to be constant. However, the interpretation of this is controversial. An
eccentricity of the true density-ellipsoid gradient and a population gradient
are two possible explanations.
The best fit for the stellar density, for 1300 pc<t<3000 pc, are calculated
for both cases, assuming an ellipsoidal distribution with constant axial
ratios, and when K_z is allowed to vary. From these, the total number of bulge
stars is ~ 3 10^{10} or ~ 4 10^{10}, respectively.Comment: 19 pages, 23 figures, accepted in MNRA
An improved version of the Implicit Integral Method to solving radiative transfer problems
Radiative transfer (RT) problems in which the source function includes a
scattering-like integral are typical two-points boundary problems. Their
solution via differential equations implies to make hypotheses on the solution
itself, namely the specific intensity I(tau;n) of the radiation field. On the
contrary, integral methods require to make hypotheses on the source function
S(tau). It looks of course more reasonable to make hypotheses on the latter
because one can expect that the run of S(tau) with depth be smoother than that
of I(tau;n).
In previous works we assumed a piece-wise parabolic approximation for the
source function, which warrants the continuity of S(tau) and its first
derivative at each depth point. Here we impose the continuity of the second
derivative S"(tau). In other words, we adopt a cubic spline representation to
the source function, which highly stabilize the numerical processes.Comment: Accepted for publication in Astrophysics (2012, N.1
Two photon annihilation of Kaluza-Klein dark matter
We investigate the fermionic one-loop cross section for the two photon
annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal
extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray
line with energy equal to the KK dark matter particle mass. We find that the
cross section is large enough that if a continuum signature is detected, the
energy distribution of gamma-rays should end at the particle mass with a peak
that is visible for an energy resolution of the detector at the percent level.
This would give an unmistakable signature of a dark matter origin of the
gamma-rays, and a unique determination of the dark matter particle mass, which
in the case studied should be around 800 GeV. Unlike the situation for
supersymmetric models where the two-gamma peak may or may not be visible
depending on parameters, this feature seems to be quite robust in UED models,
and should be similar in other models where annihilation into fermions is not
helicity suppressed. The observability of the signal still depends on largely
unknown astrophysical parameters related to the structure of the dark matter
halo. If the dark matter near the galactic center is adiabatically contracted
by the central star cluster, or if the dark matter halo has substructure
surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio
Determining the Physical Properties of the B Stars I. Methodology and First Results
We describe a new approach to fitting the UV-to-optical spectra of B stars to
model atmospheres and present initial results. Using a sample of lightly
reddened stars, we demonstrate that the Kurucz model atmospheres can produce
excellent fits to either combined low dispersion IUE and optical photometry or
HST FOS spectrophotometry, as long as the following conditions are fulfilled:
1) an extended grid of Kurucz models is employed,
2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the
Massa & Fitzpatrick (1999) transformation, and
3) all of the model parameters and the effects of interstellar extinction are
solved for simultaneously.
When these steps are taken, the temperatures, gravities, abundances and
microturbulence velocities of lightly reddened B0-A0 V stars are determined to
high precision. We also demonstrate that the same procedure can be used to fit
the energy distributions of stars which are reddened by any UV extinction curve
which can be expressed by the Fitzpatrick & Massa (1990) parameterization
scheme.
We present an initial set of results and verify our approach through
comparisons with angular diameter measurements and the parameters derived for
an eclipsing B star binary. We demonstrate that the metallicity derived from
the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We
find that a near zero microturbulence velocity provides the best-fit to all but
the hottest or most luminous stars (where it may become a surrogate for
atmospheric expansion), and that the use of white dwarfs to calibrate UV
spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures.
Astrophysical Jounral, in pres
Structural properties of disk galaxies. II. Intrinsic shape of bulges
(Abridged) The structural parameters of a magnitude-limited sample of 148
unbarred S0-Sb galaxies were analyzed to derive the intrinsic shape of their
bulges. We developed a new method to derive the intrinsic shape of bulges based
on the geometrical relationships between the apparent and intrinsic shapes of
bulges and disks. The equatorial ellipticity and intrinsic flattening of bulges
were obtained from the length of the apparent major and minor semi-axes of the
bulge, twist angle between the apparent major axis of the bulge and the galaxy
line of nodes, and galaxy inclination. We found that the intrinsic shape is
well constrained for a subsample of 115 bulges with favorable viewing angles. A
large fraction of them is characterized by an elliptical section (B/A<0.9).
This fraction is 33%, 55%, and 43% if using their maximum, mean, or median
equatorial ellipticity, respectively. Most are flattened along their polar axis
(C<(A+B)/2). The distribution of triaxiality is strongly bimodal. This
bimodality is driven by bulges with Sersic index n>2, or equivalently, by the
bulges of galaxies with a bulge-to-total ratio B/T>0.3. In particular, bulges
with n\leq2 and with B/T\leq0.3 show a larger fraction of oblate axisymmetric
(or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and
fewer prolate axisymmetric (or nearly axisymmetric) bulges with respect to
bulges with n>2 and with B/T>0.3, respectively. According to predictions of the
numerical simulations of bulge formation, bulges with n\leq2, which show a high
fraction of oblate axisymmetric (or nearly axisymmetric) shapes and have
B/T\leq0.3, could be the result of dissipational minor mergers. Both major
dissipational and dissipationless mergers seem to be required to explain the
variety of shapes found for bulges with n>2 and B/T>0.3.Comment: 16 pages, 12 figures; accepted for publication in A&
The long Galactic bar as seen by UKIDSS Galactic Plane Survey
Over the last decade there have been a series of results supporting the
hypothesis of the existence of a long thin bar in the Milky Way with a
half-length of 4.5 kpc and a position angle of around 45 deg. This is
apparently a very different structure from the triaxial bulge of the Galaxy,
which is thicker and shorter and dominates the star counts at |l|<10 deg. In
this paper, we analyse the stellar distribution in the inner Galaxy to see if
there is clear evidence for two triaxial or bar-like structures in the Milky
Way.
By using the red-clump population as a tracer of Galactic structure, we
determine the apparent morphology of the inner Galaxy. Deeper and higher
spatial resolution NIR photometry from the UKIDSS Galactic Plane Survey allows
us to use in-plane data even at the innermost Galactic longitudes, a region
where the source confusion is a dominant effect that makes it impossible to use
other NIR databases such as 2MASS or TCS-CAIN. We show that results previously
obtained with using the red-clump giants are confirmed with the in-plane data
from UKIDSS GPS. There are two different structures coexisting in the inner
Galactic plane: one with a position angle of 23.60+-2.19 deg that can be traced
from the Galactic Centre up to l=10 deg (the Galactic bulge), and other with a
larger position angle of 42.44+-2.14 deg, that ends around l=28 deg (the long
Galactic bar).Comment: (8 pages, 14 figures, accepted for publication in A&A
Determining Supersymmetric Parameters With Dark Matter Experiments
In this article, we explore the ability of direct and indirect dark matter
experiments to not only detect neutralino dark matter, but to constrain and
measure the parameters of supersymmetry. In particular, we explore the
relationship between the phenomenological quantities relevant to dark matter
experiments, such as the neutralino annihilation and elastic scattering cross
sections, and the underlying characteristics of the supersymmetric model, such
as the values of mu (and the composition of the lightest neutralino), m_A and
tan beta. We explore a broad range of supersymmetric models and then focus on a
smaller set of benchmark models. We find that by combining astrophysical
observations with collider measurements, mu can often be constrained far more
tightly than it can be from LHC data alone. In models in the A-funnel region of
parameter space, we find that dark matter experiments can potentially determine
m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1)
cannot be observed at the LHC. The information provided by astrophysical
experiments is often highly complementary to the information most easily
ascertained at colliders.Comment: 46 pages, 76 figure
The use of combination therapy in pulmonary arterial hypertension: new developments
There is a strong clinical rationale for combination therapy in pulmonary arterial hypertension (PAH), as several pathological pathways have been implicated in its pathogenesis and no single agent has yet been shown to deliver completely satisfactory results. Registry data indicate that use of combination therapy is in fact common in existing clinical practice, even though support has been largely empirical or derived from small-scale observational studies. Data from large, adequately powered, randomised controlled trials of combination therapy in PAH are now emerging and suggest that combination therapy may be clinically beneficial. Studies of bosentan in combination with prostanoids and phosphodiesterase (PDE)-5 inhibitors show consistent evidence of improvements in exercise capacity compared with placebo. Similar improvements have been observed with PDE-5 inhibitors in combination with prostanoids. The appropriate timing of combination therapy requires further evaluation but goal-oriented therapy using combinations of oral and inhaled drugs has been shown to provide acceptable long-term results in patients with advanced PAH. Monitoring should be performed regularly and be based on repeatable, noninvasive, measurable parameters that have prognostic value
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
- …
