513 research outputs found

    An improved version of the Implicit Integral Method to solving radiative transfer problems

    Full text link
    Radiative transfer (RT) problems in which the source function includes a scattering-like integral are typical two-points boundary problems. Their solution via differential equations implies to make hypotheses on the solution itself, namely the specific intensity I(tau;n) of the radiation field. On the contrary, integral methods require to make hypotheses on the source function S(tau). It looks of course more reasonable to make hypotheses on the latter because one can expect that the run of S(tau) with depth be smoother than that of I(tau;n). In previous works we assumed a piece-wise parabolic approximation for the source function, which warrants the continuity of S(tau) and its first derivative at each depth point. Here we impose the continuity of the second derivative S"(tau). In other words, we adopt a cubic spline representation to the source function, which highly stabilize the numerical processes.Comment: Accepted for publication in Astrophysics (2012, N.1

    Structural properties of disk galaxies I. The intrinsic ellipticity of bulges

    Full text link
    (Abridged) A variety of formation scenarios was proposed to explain the diversity of properties observed in bulges. Studying their intrinsic shape can help in constraining the dominant mechanism at the epochs of their assembly. The structural parameters of a magnitude-limited sample of 148 unbarred S0--Sb galaxies were derived in order to study the correlations between bulges and disks as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. It is presented a new fitting algorithm (GASP2D) to perform the two-dimensional photometric decomposition of galaxy surface-brightness distribution. This was assumed to be the sum of the contribution of a bulge and disk component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. Bulge and disk parameters of the sample galaxies were derived from the J-band images which were available in the Two Micron All Sky Survey. The PDF of the equatorial ellipticity of the bulges was derived from the distribution of the observed ellipticities of bulges and misalignments between bulges and disks. Strong correlations between the bulge and disk parameters were found. About 80% of bulges in unbarred lenticular and early-to-intermediate spiral galaxies are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is = 0.85. There is not significant dependence of their PDF on morphology, light concentration, and luminosity. The interplay between bulge and disk parameters favors scenarios in which bulges assembled from mergers and/or grew over long times through disk secular evolution. But all these mechanisms have to be tested against the derived distribution of bulge intrinsic ellipticities.Comment: 24 pages, 13 figures, accepted for publication in A&A, corrected proof

    Inversion of stellar statistics equation for the Galactic Bulge

    Get PDF
    A method based on Lucy (1974, AJ 79, 745) iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K-band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10 deg.>|b|>2 deg., |l|<15 deg.). The top end of the K-band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by Lopez-Corredoira et al.(1997, MNRAS 292, L15), are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M_K=-8.0 mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12 deg. in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major-minor axial ratio of the ellipsoids is found not to be constant. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc<t<3000 pc, are calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K_z is allowed to vary. From these, the total number of bulge stars is ~ 3 10^{10} or ~ 4 10^{10}, respectively.Comment: 19 pages, 23 figures, accepted in MNRA

    The use of combination therapy in pulmonary arterial hypertension: new developments

    Get PDF
    There is a strong clinical rationale for combination therapy in pulmonary arterial hypertension (PAH), as several pathological pathways have been implicated in its pathogenesis and no single agent has yet been shown to deliver completely satisfactory results. Registry data indicate that use of combination therapy is in fact common in existing clinical practice, even though support has been largely empirical or derived from small-scale observational studies. Data from large, adequately powered, randomised controlled trials of combination therapy in PAH are now emerging and suggest that combination therapy may be clinically beneficial. Studies of bosentan in combination with prostanoids and phosphodiesterase (PDE)-5 inhibitors show consistent evidence of improvements in exercise capacity compared with placebo. Similar improvements have been observed with PDE-5 inhibitors in combination with prostanoids. The appropriate timing of combination therapy requires further evaluation but goal-oriented therapy using combinations of oral and inhaled drugs has been shown to provide acceptable long-term results in patients with advanced PAH. Monitoring should be performed regularly and be based on repeatable, noninvasive, measurable parameters that have prognostic value

    Determining the Physical Properties of the B Stars I. Methodology and First Results

    Full text link
    We describe a new approach to fitting the UV-to-optical spectra of B stars to model atmospheres and present initial results. Using a sample of lightly reddened stars, we demonstrate that the Kurucz model atmospheres can produce excellent fits to either combined low dispersion IUE and optical photometry or HST FOS spectrophotometry, as long as the following conditions are fulfilled: 1) an extended grid of Kurucz models is employed, 2) the IUE NEWSIPS data are placed on the FOS absolute flux system using the Massa & Fitzpatrick (1999) transformation, and 3) all of the model parameters and the effects of interstellar extinction are solved for simultaneously. When these steps are taken, the temperatures, gravities, abundances and microturbulence velocities of lightly reddened B0-A0 V stars are determined to high precision. We also demonstrate that the same procedure can be used to fit the energy distributions of stars which are reddened by any UV extinction curve which can be expressed by the Fitzpatrick & Massa (1990) parameterization scheme. We present an initial set of results and verify our approach through comparisons with angular diameter measurements and the parameters derived for an eclipsing B star binary. We demonstrate that the metallicity derived from the ATLAS 9 fits to main sequence B stars is essentially the Fe abundance. We find that a near zero microturbulence velocity provides the best-fit to all but the hottest or most luminous stars (where it may become a surrogate for atmospheric expansion), and that the use of white dwarfs to calibrate UV spectrophotometry is valid.Comment: 17 pages, including 2 pages of Tables and 6 pages of Figures. Astrophysical Jounral, in pres

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio
    corecore