186 research outputs found

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    Quantifying substructures in {\it Hubble Frontier Field} clusters: comparison with ΛCDM\Lambda CDM simulations

    Full text link
    The Hubble Frontier Fields (HFF) are six clusters of galaxies, all showing indications of recent mergers, which have recently been observed for lensed images. As such they are the natural laboratories to study the merging history of galaxy clusters. In this work, we explore the 2D power spectrum of the mass distribution PM(k)P_{\rm M}(k) as a measure of substructure. We compare PM(k)P_{\rm M}(k) of these clusters (obtained using strong gravitational lensing) to that of Λ\LambdaCDM simulated clusters of similar mass. To compute lensing PM(k)P_{\rm M}(k), we produced free-form lensing mass reconstructions of HFF clusters, without any light traces mass (LTM) assumption. The inferred power at small scales tends to be larger if (i)~the cluster is at lower redshift, and/or (ii)~there are deeper observations and hence more lensed images. In contrast, lens reconstructions assuming LTM show higher power at small scales even with fewer lensed images; it appears the small scale power in the LTM reconstructions is dominated by light information, rather than the lensing data. The average lensing derived PM(k)P_{\rm M}(k) shows lower power at small scales as compared to that of simulated clusters at redshift zero, both dark-matter only and hydrodynamical. The possible reasons are: (i)~the available strong lensing data are limited in their effective spatial resolution on the mass distribution, (ii)~HFF clusters have yet to build the small scale power they would have at z0z\sim 0, or (iii)~simulations are somehow overestimating the small scale power.Comment: 13 pages, 10 figures, 1 table; Accepted for publication in MNRA

    A history of the European Space Agency: 1958-1987

    Get PDF

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    The Frontier Fields Lens Modeling Comparison Project

    Get PDF
    Gravitational lensing by clusters of galaxies offers a powerful probe of their structure and mass distribution. Deriving a lens magnification map for a galaxy cluster is a classic inversion problem and many methods have been developed over the past two decades to solve it. Several research groups have developed techniques independently to map the predominantly dark matter distribution in cluster lenses. While these methods have all provided remarkably high precision mass maps, particularly with exquisite imaging data from the Hubble Space Telescope (HST), the reconstructions themselves have never been directly compared. In this paper, we report the results of comparing various independent lens modeling techniques employed by individual research groups in the community. Here we present for the first time a detailed and robust comparison of methodologies for fidelity, accuracy and precision. For this collaborative exercise, the lens modeling community was provided simulated cluster images -- of two clusters Ares and Hera -- that mimic the depth and resolution of the ongoing HST Frontier Fields. The results of the submitted reconstructions with the un-blinded true mass profile of these two clusters are presented here. Parametric, free-form and hybrid techniques have been deployed by the participating groups and we detail the strengths and trade-offs in accuracy and systematics that arise for each methodology. We note in conclusion that lensing reconstruction methods produce reliable mass distributions that enable the use of clusters as extremely valuable astrophysical laboratories and cosmological probes.Comment: 38 pages, 25 figures, submitted to MNRAS, version with full resolution images can be found at http://pico.bo.astro.it/~massimo/papers/FFsims.pd

    Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    Get PDF
    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. © 2013 European Molecular Biology Organization

    Association of Certain Characters in a Collection of Wheat X Wheatgrass Hybrids

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    The comparison of multipotential for differentiation of progenitor mesenchymal-like stem cells obtained from livers of young and old rats.

    Get PDF
    The presence of stem cells differentiating to hepatocytes and cholangiocytes has been previously reported in livers of young rats. Here, we have isolated, cultured, and characterized mesenchymal stem cells (MSCs) from livers of young and old rats and tested their multipotential for differentiation. The mesenchymal stem cells in liver sections were identified by the presence of markers, respectively for primary stem cells Thy-1 and CD34, for differentiation to early cholangiocytes GST and CK19, and for differentiation to hepatocytes GSTalpha and CK18. Ki67 was detected as the cell proliferation marker. Cells isolated from livers of either age group were tested in a culture for their viability following storage and were characterized for the presence of most of the markers detected in cells in situ. The results revealed age-dependent changes in the number of recovered primary MSCs. In both age groups we have observed cells changing under differentiating conditions to liver cell lineages, such as cholangiocytes and hepatocytes, as well as to non-liver cells such as adipocytes, astrocytes, neuroblasts, and osteoblasts. Our data revealed that from the livers of rats 20 months and older the primary MSCs could be isolated and expanded; however, they were significantly fewer, even though their differentiation multipotential was preserved. The mechanism involved in the differentiation of liver MSCs seemed to depend on a constellation of signals in Notch signalling pathways. Thus, our results support the idea of potential use of liver as a source of MSCs, not only for liver reconstruction but also for cell therapy in general

    ERCC6L2 mitigates replication stress and promotes centromere stability

    Get PDF
    Structurally complex genomic regions, such as centromeres, are inherently difficult to duplicate. The mechanism behind centromere inheritance is not well understood, and one of the key questions relates to the reassembly of centromeric chromatin following DNA replication. Here, we define ERCC6L2 as a key regulator of this process. ERCC6L2 accumulates at centromeres and promotes deposition of core centromeric factors. Interestingly, ERCC6L2−/− cells show unrestrained replication of centromeric DNA, likely caused by the erosion of centromeric chromatin. Beyond centromeres, ERCC6L2 facilitates replication at genomic repeats and non-canonical DNA structures. Notably, ERCC6L2 interacts with the DNA-clamp PCNA through an atypical peptide, presented here in a co-crystal structure. Finally, ERCC6L2 also restricts DNA end resection, acting independently of the 53BP1-REV7-Shieldin complex. We propose a mechanistic model, which reconciles seemingly distinct functions of ERCC6L2 in DNA repair and DNA replication. These findings provide a molecular context for studies linking ERCC6L2 to human disease
    corecore