873 research outputs found

    Correlation of clusters: Partially truncated correlation functions and their decay

    Get PDF
    In this article, we investigate partially truncated correlation functions (PTCF) of infinite continuous systems of classical point particles with pair interaction. We derive Kirkwood-Salsburg-type equations for the PTCF and write the solutions of these equations as a sum of contributions labelled by certain forests graphs, the connected components of which are tree graphs. We generalize the method introduced by R.A. Minlos and S.K. Poghosyan (1977) in the case of truncated correlations. These solutions make it possible to derive strong cluster properties for PTCF which were obtained earlier for lattice spin systems.Comment: 31 pages, 2 figures. 2nd revision. Misprints corrected and 1 figure adde

    Diamagnetism of quantum gases with singular potentials

    Full text link
    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is jointly analytic in the chemical potential ant the intensity of the external magnetic field. We also discuss the thermodynamic limit

    Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    Get PDF
    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean

    Correlation of clusters: Partially truncated correlation functions and their decay

    Get PDF
    In this article, we investigate partially truncated correlation functions (PTCF) of infinite continuous systems of classical point particles with pair interaction. We derive Kirkwood-Salsburg-type equations for the PTCF and write the solutions of these equations as a sum of contributions labelled by certain forests graphs, the connected components of which are tree graphs. We generalize the method introduced by R.A. Minlos and S.K. Pogosyan (1977) in the case of truncated correlations. These solutions make it possible to derive strong cluster properties for PTCF which were obtained earlier for lattice spin systems

    A combinatorial identity

    Get PDF
    We give an elementary proof of an interesting combinatorial identity which is of particular interest in graph theory and its applications

    Continuous Cold-atom Inertial Sensor with 1 nrad.s11\ \text{nrad.s}^{-1} Rotation Stability

    Full text link
    We report the operation of a cold-atom inertial sensor which continuously captures the rotation signal. Using a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer (AI) enables us to eliminate the dead times. We show that such continuous operation improves the short-term sensitivity of AIs, and demonstrate a rotation sensitivity of 100 nrad.s1.Hz1/2100\ \text{nrad.s}^{-1}.\text{Hz}^{-1/2} in a cold-atom gyroscope of 11 cm211 \ \text{cm}^2 Sagnac area. We also demonstrate a rotation stability of 1 nrad.s11 \ \text{nrad.s}^{-1} at 10410^4 s of integration time, which establishes the record for atomic gyroscopes. The continuous operation of cold-atom inertial sensors will enable to benefit from the full sensitivity potential of large area AIs, determined by the quantum noise limit.Comment: 4 pages, 3 figure

    Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications

    Full text link
    Developments in atom interferometry have led to atomic inertial sensors with extremely high sensitivity. Their performances are for the moment limited by the ground vibrations, the impact of which is exacerbated by the sequential operation, resulting in aliasing and dead time. We discuss several experiments performed at LNE-SYRTE in order to reduce these problems and achieve the intrinsic limit of atomic inertial sensors. These techniques have resulted in transportable and high-performance instruments that participate in gravity measurements, and pave the way to applications in inertial navigation.Comment: 7 pages, 5 figure

    Comparisons of trace constituents from ground stations and the DC-8 aircraft during PEM-West B

    Get PDF
    Chemical data from ground stations in Asia and the North Pacific are compared with data from the DC-8 aircraft collected during the Pacific Exploratory Measurements in the Western Pacific Ocean (PEM-West B) mission. Ground station sampling took place on Hong Kong, Taiwan, Okinawa, and Cheju; and at three Pacific islands, Shemya, Midway, and Oahu. Aircraft samples were collected during 19 flights, most over the western North Pacific. Aluminum was used as an indicator of mineral aerosol, and even though the aircraft did sample Asian dust, strong dust storms were not encountered. The frequency distribution for non-sea-salt sulfate (nss SO4=) in the aircraft samples was bimodal: the higher concentration mode (∼1 μg m−3) evidently originated from pollution or, less likely, from volcanic sources, while the lower mode, with a peak at 0.040 μg m−3, probably was a product of biogenic emissions. In addition, the concentrations of aerosol sulfate varied strongly in the vertical: arithmetic mean SO4=concentrations above 5000 m ( = 0.21±0.69 μg m−3) were substantially lower than those below ( = 1.07±0.87 μg m−3), suggesting the predominance of the surface sources. Several samples collected in the stratosphere exhibited elevated SO4=, however, probably as a result of emissions from Mount Pinatubo. During some boundary layer legs on the DC-8, the concentrations of CO and O3 were comparable to those of clean marine air, but during other legs, several chemically distinct air masses were sampled, including polluted air in which O3was photochemically produced. In general, the continental outflow sampled from the aircraft was substantially diluted with respect to what was observed at the ground stations. Higher concentrations of aerosol species, O3, and CO at the Hong Kong ground station relative to the aircraft suggest that much of the continental outflow from southeastern Asia occurs in the lower troposphere, and extensive long-range transport out of this part of Asia is not expected. In comparison, materials emitted farther to the north apparently are more susceptible to long-range transport
    corecore