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Abstract

In this article, we investigate partially truncated correlation functions (PTCF) of infinite continuous
systems of classical point particles with pair interaction. We derive Kirkwood-Salsburg-type equations
for the PTCF and write the solutions of these equations as a sum of contributions labelled by certain
forest graphs, the connected components of which are tree graphs. We generalize the method developed
by R.A. Minlos and S.K. Pogosyan (1977) in the case of truncated correlations. These solutions make it
possible to derive strong cluster properties for PTCF which were obtained earlier for lattice spin systems.
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1 Introduction.

Correlation functions were first introduced in Statistical Mechanics by L.S. Ornstein and F. Zernike at
the beginning of the 20th century in the study of critical fluctuations, see [25]. Mathematical studies
apparently began with the work of J. Yvon [36] and the independent works of N.N. Bogolyubov [3], J.G.
Kirkwood [16], and, M. Born and H.S. Green [5]. In some sense, they were completed in the works of O.
Penrose [26], D. Ruelle [33], and, N.N. Bogolyubov et al. [4]. Correlation functions are the probability
densities of correlation measures and were called m-particle distribution functions by N.N. Bogolyubov,
which more accurately describes their meaning. The physical correlations between particles are in fact
described by the so-called truncated correlation functions (TCF), or connected correlation functions,
which become zero in the absence of interaction between the particles.

When studying the thermodynamic properties of statistical systems, the important characteristics
are often interactions between groups of particles (the so-called clusters). Correlations between clusters
are described by the so-called partially truncated correlation functions (PTCF), or partially connected
correlation functions. In [20], J.L. Lebowitz derived bounds on the decay of correlations between two
widely separated sets of particles (two point-PTCF) for ferromagnetic Ising spin systems in terms of
the decay of the pair correlation. Later, in [10], some ’physically reasonable’ hypotheses on the decay
of the TCF and PTCF were presented and discussed. In subsequent publications of these authors [11,
12], various strong decay properties were proved for TCF of lattice and continuous systems in different
situations. In [14], some general results on strong cluster properties of TCF and PTCF for lattice gases
are presented (in fact, the proof of their main theorem involves long technical parts which were obtained
in unpublished work of one of the authors).

In this paper, we consider classical continuous systems of point particles which interact through a
two-body interaction potential. We derive equations of Kirkwood-Salsburg-type for the PTCF and apply
the technique that was proposed by R.A. Minlos and S.K. Pogosyan in [22] to obtain solutions of these
equations in the form of a series of contributions of certain forest diagrams. Such a representation makes
it possible to obtain strong cluster properties for the PTCF in a convenient form for deriving estimates.
We stress the point that explicit formulas for the upper bounds are obtained, some of which rely on some
original (to our best knowledge) combinatorial identities.

2 Mathematical background.

2.1 Configuration spaces.

Let Rd be a d-dimensional Euclidean space, d ≥ 1. By B(Rd) we denote the family of all Borel sets in Rd
and by Bc(Rd) the system of all sets in B(Rd) which are bounded.

The positions {xi}i∈N of identical particles are assumed to form a locally finite subset in Rd. Because
the particles are assumed to be identical, the ordering is irrelevant. Moreover, there can be more than
one particle at any point. The configuration space is therefore given by locally finite maps

Γ = ΓRd := {γ : Rd → N0 :
∑
x∈Λ

γ(x) <∞ for all Λ ∈ Bc(Rd)},

where we set N0 := N ∪ {0}. For any Λ ∈ Bc(Rd), we hereafter denote by γΛ the restriction of γ to Λ.
Further, we define the space of finite configurations Γ0 in Rd as

Γ0 :=
⊔
n∈N0

Γ(n), Γ(n) := {γ ∈ Γ :
∑
x∈Rd

γ(x) = n},

and the space of finite configurations in Λ as

ΓΛ :=
⊔
n∈N0

Γ
(n)
Λ , Γ

(n)
Λ := {γ ∈ Γ :

∑
x∈Λ

γ(x) = n,
∑
x∈Λc

γ(x) = 0}.

The topology on Γ is generated by the subbasis {OmK}, where m ∈ N0 and K runs over compact subsets
of Rd with nonempty interior, given by, see, e.g., [34, Sec. 5],

OmK := {γ ∈ Γ :
∑
x∈K

γ(x) =
∑

x∈Int(K)

γ(x) = m}.
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The topological space Γ is a polish space (i.e., metrizable, separable and complete). The corresponding
Borel σ-algebra B(Γ) is generated by the sets

Wm
Λ := {γ ∈ Γ :

∑
x∈Λ

γ(x) = m}, Λ ∈ Bc(Rd).

For further details, we refer the readers to [23, 21] and also the later works [17, 18].

2.2 Poisson measure on configuration spaces.

States of an ideal gas in equilibrium statistical mechanics are described by a Poisson random point measure
πzσ on the configuration space Γ, where z > 0 is the activity (determining the density of particles) and
σ denotes the Lebesgue measure on Rd, i.e., σ(dx) = dx. So πzσ is the Poisson measure with intensity
measure zσ. To define πzσ on Γ, we first introduce a Lebesgue-Poisson measure λzσ = λΛ

zσ on the space
of finite configurations ΓΛ, Λ ∈ Bc(Rd) or Γ0, see, e.g., [23]. Given an n-tuple (x1, . . . , xn) ∈ Λn, define

γ(x1,...,xn)(x) :=

n∑
i=1

1{xi}(x), (2.1)

which is independent of the order of the points x1, . . . , xn. Given a continuous function F : Γ→ R, we can
put Fn(x1, . . . , xn) := F (γ(x1,...,xn)), n ∈ N which defines a continuous symmetric function Fn : Rnd → R.
Then, we define, ∫

ΓΛ

F (γ)λzσ(dγ) :=

∞∑
n=0

zn

n!

∫
Λ

· · ·
∫

Λ

F (γ(x1,...,xn)) dx1 · · · dxn

=

∞∑
n=0

zn

n!

∫
Λ

· · ·
∫

Λ

Fn(x1, . . . , xn) dx1 · · · dxn,
(2.2)

where the term n = 0 in the sum is set to 1 by convention. It can be seen from (2.2) that the family of
probability measures

πΛ
zσ := e−zσ(Λ)λΛ

zσ, Λ ∈ Bc(Rd),
is consistent (i.e., forms a projective system), and by standard arguments, one can prove that there exists
a unique probability measure πzσ on the configuration space Γ which is the projective limit of πΛ

zσ.
The main feature of the measures πzσ and λzσ is the independence of restrictions to disjoint Borel

sets, which is called infinite divisibility, see, e.g., [13, Sec. 4.4]. This means that, for example, in the
configuration space ΓΛ, the following lemma holds.

Lemma 2.1 Let Λ ∈ Bc(Rd) and Xk ∈ Bc(Rd), k = 1, 2 such that X1 ∩X2 = ∅ and X1 ∪X2 = Λ. Then,
for all measurable functions Fk : ΓXk → R, the following identity holds∫

ΓΛ

F1(γ)F2(γ)λzσ(dγ) =

∫
ΓX1

F1(γ)λzσ(dγ)

∫
ΓX2

F2(γ)λzσ(dγ).

In [30, 28, 29] this property is the main technical tool in proving the existence of correlation functions
in the infinite-volume limit. The following identity is similar, and will be used extensively.

Lemma 2.2 Given Λ ∈ Bc(Rd) and for all positive measurable functions F : ΓΛ → R and H : ΓΛ×ΓΛ →
R, the following identity holds∫

ΓΛ

F (γ)
∑
η≤γ

H(η, γ − η)λσ(dγ) =

∫
ΓΛ

∫
ΓΛ

F (η + γ)H(η, γ)λσ(dη)λσ(dγ). (2.3)

Proof. Set dnx := dx1 · · · dxn. By (2.2), the left-hand side can be rewritten as

∞∑
n=0

1

n!

∫
Λn
Fn(x1, . . . , xn)

∑
I⊂{1,...,n}

H|I|,n−|I|(xI , xIc) d
nx

=

∞∑
n=0

1

n!

n∑
m=0

(
n

m

)∫
Λn
Fn(x1, . . . , xm, xm+1, . . . , xn)Hm,n−m(x1, . . . , xm, xm+1, . . . , xn) dnx

=

∞∑
m=0

∞∑
k=0

1

m! k!

∫
Λm

∫
Λk
Fm+k(x1, . . . , xm, y1, . . . , yk)Hm,k(x1, . . . , xm, y1, . . . , yk) dmx dky,
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where we set Ic := {1, . . . , n} \ I. It remains to use (2.2) again, and (2.3) follows. �

2.3 Distributions in D′(Γ0).

The space of test functions D(Γ0) consists of functions F : Γ0 → R given by a sequence (Fn)n∈N of
symmetric functions Fn ∈ C∞0 (Rdn) with common support such that

F (γ) = F (γ(x1,...,xn)) = Fn(x1, . . . , xn), for any γ ∈ Γ(n),

where γ(x1,...,xn) is defined as in (2.1). Hereafter, we denote |γ| :=
∑
x∈Rd γ(x), γ ∈ Γ0.

For a given j ∈ C∞0 (Rd) with |j| ≤ 1, we introduce the function χj : Γ0 → R defined as

η 7→ χj(η) :=

{
1, η = ∅,∏
x∈η

j(x), |η| ≥ 1. (2.4)

Here and hereafter, x ∈ η means x ∈ Rd such that η(x) ≥ 1. Clearly, χj ∈ D(Γ0).
For any η ∈ Γ0, we define distributions δη such that, for any F ∈ D(Γ0),

〈δη, F 〉 :=

∫
Γ0

δη(γ)F (γ)λzσ(dγ) = z|η|F (η). (2.5)

In terms of ’ordinary’ distributions, this means that

δη(γ) =


0, if |γ| 6= |η|,
1, if γ = η = 0,∑
π∈Sm

m∏
k=1

δ(xk − yπ(k)), if γ = γ(x1,...,xm), η = γ(y1,...,ym),

where Sm is the group of permutations of {1, . . . ,m}, and the product is a direct product of δ-functions.
Note that, if η1 · η2 = 0 for some η1, η2 ∈ Γ0 then δη1

and δη2
commute. Given collections (ηi)

m
i=1 of

ηi ∈ Γ0 with ηi · ηi′ = 0 if i 6= i′ and complex numbers (αi)
m
i=1, we can then define the product

m∏
i=1

∆(αi,ηi)(γ) :=

m∏
i=1

(1 + αi
∑
ξi≤γ

δηi(ξi)). (2.6)

Note that, if ηi · ηi′ = 0 for i 6= i′, then∏
i∈I

∑
ξi≤γ

δηi(ξi) =
∑
ξ≤γ

δ∑
i∈I

ηi(ξ), I ⊂ {1, . . . ,m}.

In distributional form, we have

〈
m∏
i=1

∆(αi,ηi), F 〉 =
∑

I⊂{1,...,m}

∏
i∈I

αiz
|ηi|
∫

Γ0

F (
∑
i∈I

ηi + γ)λzσ(dγ). (2.7)

Indeed, by (2.3) (in distributional form) along with (2.5),∫
Γ0

F (γ)
∑
ξ≤γ

δ∑
i∈I

ηi(ξ)λzσ(dγ) =

∫
Γ0

∫
Γ0

F (ξ + γ)δ∑
i∈I

ηi(ξ)λzσ(dξ)λzσ(dγ)

= z

∑
i∈I
|ηi|
∫

Γ0

F (
∑
i∈I

ηi + γ)λzσ(dγ).

3 Correlation functions.

3.1 Interaction potential.

We consider a general type of two-body interaction potential

V2(x, y) = φ(|x− y|),
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where φ : [0,+∞)→ R ∪ {+∞} satisfies the following conditions.
(A): Assumptions about the interaction potential. The potential φ is continuous on (0,+∞),

φ(0) = +∞, and there exist constants 0 < r1 < r0 < r2, ϕ1 > 0, ϕ2 > 0, s ≥ d and ε0 > 0 such that

φ(r) = φ+(r) for 0 < r ≤ r0, and φ+(r) ≥ ϕ1r
−s for r < r1; (3.1)

φ(r) = −φ−(r) for r > r0, and φ−(r) ≤ ϕ2r
−d−ε0 for r > r2, (3.2)

where φ+ and φ− denote the positive and negative parts of φ respectively defined as

φ+(r) := max{0, φ(r)}, φ−(r) := −min{0, φ(r)}.

The shape of such potentials is illustrated in Figure 1.

Figure 1: The Lennard-Jones potential.

A typical example is the Lennard-Jones potential, see, e.g., [33, 8], given by

φLJ (|x|) :=
ϕ0

|x|6
(
r6
0

|x|6
− 1),

where ϕ0 > 0 is a given constant. It is clear that the potential φLJ is strongly superstable, see, e.g., [31].
Given η, γ ∈ Γ0, we define the total particle interaction energy U(γ) in the configuration γ and the

interaction energy W (η; γ) between the particles in the configurations η and γ respectively as

U(γ) = Uφ(γ) :=
∑
η≤γ
|η|=2

V2(η), (3.3)

W (η; γ) :=
∑
x∈η
y∈γ

η(x)γ(y)φ(|x− y|). (3.4)

Note that, under our conditions, U(γ) = +∞ if γ(x) ≥ 2 for some x, and similarly, W (η; γ) = +∞ if η
and γ overlap, i.e. there exist some x such that η(x) 6= 0 and γ(x) 6= 0.

Remark 3.1 The conditions (3.1) and (3.2) are more restrictive than needed to obtain the basic expan-
sions for the correlation functions. Sufficient assumptions to obtain analytic expansions are stability

U(γ) ≥ −B|γ|, B ≥ 0, γ ∈ Γ0, (3.5)

and regularity, see, e.g., [33, Sec. 4.1],

ν1(β) :=

∫
Rd
νβ(x) dx < +∞, with νβ(x) := |e−βφ(|x|) − 1|. (3.6)

We emphasize that (3.5) and (3.6) hold true under the conditions (3.1) and (3.2).
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3.2 Gibbs measure.

With the notation introduced above, given Λ ∈ Bc(Rd), the Gibbs measure µΛ on the configuration space
ΓΛ is defined as

µΛ(dγ) :=
1

ZΛ
e−βU(γ) λzσ(dγ), (3.7)

ZΛ :=

∫
ΓΛ

e−βU(γ) λzσ(dγ), (3.8)

where ZΛ is the finite-volume partition function. For a survey and discussion of problems related to the
construction of limit Gibbs measures for infinite systems in the space Γ, we refer the readers to the review
[19] and references therein.

3.3 Correlation measure and correlation functions.

Correlation functions are the analogue of the moments of a measure. Let M+(Rd) denote the space of
nonnegative Radon measures in B(Rd). Consider the moments of a measure in the configuration space Γ.
With every configuration γ ∈ Γ can be associated an occupation measure according to, see, e.g., [1, 15],

Γ 3 γ 7→
∑
x∈γ

δx ∈M+(Rd),

where, as previously, x ∈ γ means x ∈ Rd such that γ(x) ≥ 1, and, δx is the Dirac measure, i.e.,

〈δx, f〉 = f(x), f ∈ C0(Rd),

and C0(Rd) denotes the space of continuous functions with compact support in Rd.
To generalize this to the case of several variables, note that the product of distributions is not defined.

For example, in the case of Gaussian measures, one usually applies Wick regularization, see, e.g., [35, 2].
An analogous procedure may be used for Poisson variables and is described below.

Let F : Γ0 → R be a function on the configuration space Γ0 such that

F � Γ(n) := F (n)({x1, . . . , xn}) = Fn(x1, . . . , xn), n ∈ N,

where, for every n ∈ N, Fn ∈ C0(Rdn) is a symmetric function. Then,

〈F (1), γ〉 :=
∑
x1∈γ
〈F (1), δx1

〉 =
∑
x1∈γ

F1(x1),

and we define the n-th power by

〈F (n), : γ⊗n :〉 :=
∑

x1,...,xn∈Rd
γ(x1,...,xn)≤γ

Fn(x1, . . . , xn). (3.9)

The correlation measures ρ(n) are defined by∫
Γ(n)

〈F (n), : γ⊗n :〉µ(dγ) =

∫
Rdn

Fn(x1, . . . , xn) ρ(n)(dx1, . . . , dxn). (3.10)

In case that the correlation measures ρ(n) are absolutely continuous with respect to the Lebesgue measure
in Rdn, correlation functions are defined as

ρ(n)(dx1, . . . , dxn) :=
1

n!
ρn(x1, . . . , xn) dx1 · · · dxn.

These functions are obviously symmetric, so that we can write

ρn(x1, . . . , xn) = ρ(η) � Γ(n), η = {x1, . . . , xn}.
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Using (3.9), (3.10) can then be rewritten in the form∫
Γ(n)

∑
x1,...,xn∈Rd
γ(x1,...,xn)≤γ

Fn(x1, . . . , xn)µ(dγ) =

∫
Rdn

Fn(x1, . . . , xn) ρ(n)(dx1, . . . , dxn).

Given Λ ∈ Bc(Rd), we can now define the correlation measure ρ on the configuration space ΓΛ by∫
ΓΛ

F (η) ρ(dη) =

∞∑
n=0

∫
Γ

(n)
Λ

∑
x1,...,xn∈Rd
γ(x1,...,xn)≤γ

Fn(x1, . . . , xn)µ(dγ),

where the term n = 0 in the sum is set to 1 by convention. In the case that the correlation measures are
absolutely continuous, we have,∫

ΓΛ

F (η)ρ(η)λσ(dη) =

∫
ΓΛ

∑
η≤γ

F (η)µ(dγ). (3.11)

From (3.11) along with (3.7) and (2.3), the finite-volume correlation functions can be written as

ρΛ(η) =
z|η|

ZΛ

∫
ΓΛ

e−βU(η+γ) λzσ(dγ), η ∈ ΓΛ. (3.12)

Notice that ρΛ(η) = 1 whenever η ∈ Γ
(0)
Λ . Problems related to the construction of correlation functions

in the infinite-volume limit are discussed in, e.g., [33, 4, 34, 30, 28, 29].

3.4 Truncated (connected) correlation functions.

Correlations between particles are better described by truncated (connected) correlation functions (TCF).
Given η ∈ Γ0 with |η| = n ∈ N, these functions are defined recursively by

ρT (x1) := ρ(1{x1}),

ρT (x1, . . . , xn) := ρ(η)−
n∑
k=2

∗∑
I1,...,Ik⊂{1,...,n}

k∏
l=1

ρT (ηIl), n ≥ 2,
(3.13)

where ρ(η) are the correlation functions, and the asterisk over the sum means that the sum is over all
partitions of the set {1, . . . , n} into k non-empty disjoint subsets, and ηI = γxI . That is,

k∑
l=1

ηIl = γ(x1,...,xn), with Il 6= ∅ and Ii ∩ Ii′ = ∅ if i 6= i′. (3.14)

The TCF can also be written explicitly in terms of the correlation functions ρ(η) as follows

ρT (x1, . . . , xn) =

n∑
k=1

(−1)k−1(k − 1)!

∗∑
I1,...,Ik⊂{1,...,n}

k∏
l=1

ρ(ηIl). (3.15)

Clearly, the TCF are permutation-invariant. They can then be written as ρT (γ(x1,...,xn)). In case that
ρΛ is given by (3.12), the TCF have, in the thermodynamic limit, the following representation in terms
of integrals with respect to the measure λzσ.

Proposition 3.2 Assume that the interaction potential φ satisfies (3.5) and (3.6). Then, for all β > 0
and for all 0 < z < r(β) with,

r(β) := e−2βB−1ν1(β)−1, (3.16)

the following representation for the TCF holds true

ρT (η) = z|η|
∫

Γ0

ΦT (η + γ)λzσ(dγ), η ∈ Γ0. (3.17)

7



Here, the function ΦT (γ) is the so-called Ursell function, see, e.g., [33], given by

ΦT (γ) =


0, if γ = 0,
1, if |γ| = 1,∑
G∈GT (γ)

∏
{x,y}∈L(G)

Cxy, if |γ| ≥ 2,

in which GT (γ) stands for the set of all connected graphs G (Mayer graphs) with vertices in the points x
of the configuration γ, and L(G) is the set of all lines of the graph G, and

Cxy := e−βφ(|x−y|) − 1. (3.18)

Moreover, the TCF in (3.17) can be analytically extended to the open disk of radius r(β) given in (3.16).

For a proof, we refer the readers to [26, 32]. See also [27] and [33, Sec. 4].
In his proof [26], O. Penrose noted that one could associate with each connected graph G on γ a unique
Cayley tree obtained by deleting bonds from G in a particular way (tree graph identity). The sum over
connected graphs may be rearranged by grouping together all terms (graph contributions) corresponding
to a given Cayley tree, which are obtained by the procedure of ”deleting”. Later, D. Brydges and P.
Federbush proposed in [7] a new method to derive the Mayer series for the pressure via a new type of
tree graph identity. A more detailed history of the subject and some new results can be found in [24].

In this article, we derive an expansion for more general PTCF using the technique of R.A. Minlos and
S.K. Pogosyan in [22] which is related to Penrose’s original proof. A representation for the functions ρT

in the form of expansions in terms of contributions from tree graphs follows as a special case.

3.5 Partially truncated (connected) correlation functions

Partially truncated (connected) correlation functions (PTCF) describe correlations between clusters of
particles. Decay estimates for these correlations are an important technical tool in the proof of many
physical hypotheses. For instance, see [6, Eq. (4.2)].

Given m ∈ N, consider a collection (ηi)
m
i=1 of configurations ηi ∈ Γ0 (for instance, resulting from the

decomposition of a given η ∈ Γ0 into m clusters). The corresponding PTCF are defined recursively by

ρ̃T (η1) := ρ(η1),

ρ̃T (η1; . . . ; ηm) := ρ(

m∑
i=1

ηi)−
m∑
k=2

∗∑
I1,...,Ik⊂{1,...,m}

k∏
l=1

ρ̃T (η̃l), m ≥ 2,
(3.19)

where, as previously, the asterisk over the sum means that the sum is over all partitions of {1, . . . ,m}
into k non-empty disjoint subsets, and where

η̃l :=
∑
i∈Il

ηi and

k∑
l=1

η̃l =

m∑
i=1

ηi.

We will sometimes use the notation ρ̃Tm(η1; . . . ; ηm) = ρ̃T (η1; . . . ; ηm) to emphasize the number of clusters.
Obviously, definition (3.19) coincides with the TCF in (3.13) when all configurations ηi consist of exactly
one point. Analogous to (3.15), the PTCF can be expressed directly in terms of the ρ(η̃i) as

ρ̃T (η1; . . . , ηm) =

m∑
k=1

(−1)k−1(k − 1)!

∗∑
I1,...,Ik⊂{1,...,m}

k∏
l=1

ρ(η̃l). (3.20)

To derive such an expression for the PTCF, we introduce a generating functional. It is a generalization
of the generating functional introduced in [14] for spin systems.

For a given nonnegative j ∈ C∞0 (Rd), define the smoothed correlation function ρj by

ρj(η) = ρj;1(η) :=
z|η|

Zj

∫
Γ0

χj(η + γ)e−βU(η+γ) λzσ(dγ), η ∈ Γ0, (3.21)

8



where the function χj : Γ0 → R+ is defined as in (2.4), and

Zj :=

∫
Γ0

χj(γ)e−βU(γ) λzσ(dγ).

Using the definitions (2.5) and (2.6) with nonnegative reals (αi)
m
i=1, we now put

F̃Tρj (α, η)m1 := log(Zj((αi, ηi)
m
i=1)), (3.22)

where

Zj((αi, ηi)
m
i=1) := 〈

m∏
i=1

∆(αi,ηi), χje
−βU 〉 =

∫
Γ0

m∏
i=1

∆(αiηi)(γ)χj(γ)e−βU(γ) λzσ(dγ). (3.23)

Note that, if j(x) = 1Λ(x), where 1Λ denotes the indicator function of a set Λ ∈ Bc(Rd), and if αi = 0,
i = 1, . . . ,m, then (3.23) reduces to the partition function in (3.8). Further, define

ρ̃Tj;r(η1; . . . ; ηr|(αi, ηi)mi=r+1) := (

r∏
i=1

∂

∂αi
)F̃Tρj ((αi, ηi)

m
i=1)

∣∣
α1=···=αr=0

, 1 ≤ r ≤ m. (3.24)

We call r-point j-PTCF, or simply j-PTCF when r = m, the following functions

ρ̃Tj;r(η1; . . . ; ηr) := ρ̃Tj;r(η1; . . . ; ηr|(αi, ηi)mi=r+1)
∣∣
αr+1=···=αm=0

. (3.25)

We conclude this section with the following lemma

Lemma 3.3 Given r,m ∈ N such that 1 ≤ r ≤ m, the r-point j-PTCF associated to the collection
(ηi)

m
i=1 of configurations ηi ∈ Γ0 are given by

ρ̃Tj;r(η1; . . . ; ηr) =

r∑
k=1

(−1)k−1(k − 1)!

∗∑
{J1,...,Jk}⊂{1,...,r}

k∏
l=1

ρj(
∑
i∈Jl

ηi), (3.26)

where the second sum in (3.26) runs over all partitions of {1, . . . , r} into k non-empty subsets J1, . . . , Jk
with the restrictions (3.14). In particular, when j(x) = 1Λ(x) the functions (3.25) correspond to the
finite-volume PTCF in Λ, and when j(x) = 1 they correspond to the PTCF in Rd.

Remark 3.4 One can show by induction that, for r ≥ 2, ρ̃Tj;r(η1; . . . ; ηr) = 0 if there exists i0 ∈ {1, . . . , r}
such that |ηi0 | = 0, see (3.26) along with (3.21).

Proof. The key ingredient is the following formula. Given a smooth function Z : Rm → (0,+∞),

(

k∏
i=1

∂

∂αi
) log(Z((αi)

m
i=1)) =

r∑
k=1

(−1)k−1(k − 1)!

∗∑
{J1,...,Jk}⊂{1,...,r}

k∏
l=1

1

Z((αi)mi=1)
(
∏
i∈Jl

∂

∂αi
)Z((αi)

m
i=1), 1 ≤ r ≤ m, (3.27)

which easily follows by induction. On the other hand, from (3.23) along with (2.7), we have,

(
∏
i∈Jl

∂

∂αi
)Zj((αi, ηi)

m
i=1) =

z

∑
i∈Jl
|ηi| ∑

I⊂{1,...,m}\Jl

∏
i∈I

(αiz
|ηi|)

∫
Γ0

χj(
∑
i∈Jl

ηi +
∑
i∈I

ηi + γ)e
−βU(

∑
i∈Jl

ηi+
∑
i∈I

ηi+γ)

λzσ(dγ).

Setting the remaining αi = 0, only the empty set I = ∅ survives. In view of (3.21), we then obtain

1

Zj((αi, ηi)mi=1)
(
∏
i∈Jl

∂

∂αi
)Zj((αi, ηi)

m
i=1)

∣∣
α1=···αm=0

= ρj(
∑
i∈Jl

ηi). (3.28)

Replacing Z((αi)
m
i=1) by Zj((αi, ηi)

m
i=1) in (3.27), (3.26) follows from (3.28). �

In particular, taking the limit j → 1 in (3.26) with k = m, we obtain (3.20).

9



4 Equations for PTCF and their solutions.

4.1 Kirkwood-Salsburg-type equations.

Let (ηi)
m
i=1, m ≥ 2 be a collection of configurations in Γ0 such that

∑m
i=1 |ηi| > 0. We start by deriving

Kirkwood-Salsburg-type equations for the 1-point j-PTCF. Assume that |η1| > 0 (we may change the
cluster labelling if needed). From (3.25)–(3.24) (with k = 1) and (3.22)–(3.23), the 1-point j-PTCF reads

ρ̃Tj;1(η1|(αi, ηi)mi=2) =
1

Zj((αi, ηi)mi=1)

∂

∂α1

∫
Γ0

m∏
i=1

∆(αiηi)(γ)χj(γ)e−βU(γ) λzσ(dγ)
∣∣
α1=0

. (4.1)

In view of (3.4), let x1 ∈ η1 such that

Ŵ (η1) := W (1{x1}; η1 − 1{x1}) ≥ −2B,

where B ≥ 0 is defined by (3.5). Note that the existence of such a point in any configuration follows from

(3.5), see [33, Chap. 4]. Note also that Ŵ (η1) = +∞ if η1(x1) > 1. Consider the decomposition,

e−βU(η1+γ) = e−βŴ (η1)e−βW (x1;γ)e−βU(η
′
1+γ) = e−βŴ (η1)

∑
ξ≤γ

K(x1; ξ)e−βU(η
′
1+γ), γ ∈ Γ0, (4.2)

where η
′

1 := η1 − 1{x1}, and

K(x1; ξ) :=
∏
y∈ξ

Cx1y =
∏
y∈ξ

(e−βφ(|x1−y|) − 1).

Inserting the right-hand side of the second equality of (4.2) into (4.1), we have,

ρ̃Tj;1(η1|(αi, ηi)mi=2) =
z|η1|e−βŴ (η1)

Zj((αi, ηi)mi=2)

∫
Γ0

∑
ξ≤γ

K(x1; ξ)

m∏
i=2

∆(αiηi)(γ)χj(η1 + γ)e−βU(η
′
1+γ) λzσ(dγ). (4.3)

Putting α2 = · · · = αm = 0 in (4.3) and then using (2.3) (extended to the configuration space Γ0) along
with the identity ρ̃Tj;1(η

′

1 + γ) = ρj(η
′

1 + γ), we obtain the Kirkwood-Salsburg equation

ρ̃Tj;1(η1) = ρj(η1) = ze−βŴ (η1)j(x1)

∫
Γ0

K(x1; ξ)ρj(η
′

1 + ξ)λσ(dξ). (4.4)

We now generalize those equations for the m-point j-PTCF as follows. (4.4) can be generalized as

ρj(η1 + η) = ze−βŴ (η1)j(x1)
∑
ξ≤η

∫
Γ0

K(x1; ξ + γ)ρj(η
′

1 + η + γ)λσ(dγ), (4.5)

where we used in the expansion (4.2) the identity∑
ξ≤γ+η

K(x1; ξ) =
∑
ξ≤η

∑
ς≤γ

K(x1; ξ + ς). (4.6)

Inserting (4.5) into (3.26) (instead of ρj which contains η1) and denoting I1 := J1 \ {1}, we have

ρ̃Tj;m(η1; . . . ; ηm) = ze−βŴ (η1)j(x1)

m∑
k=1

(−1)k−1(k − 1)!

×
∑

I1⊂{2,...,m}

∗∑
{I2,...,Ik}⊂{2,...,m}\I1

∑
ξ≤

∑
i∈I1

ηi

∫
Γ0

K(x1; ξ + γ)ρ(η
′

1 +
∑
i∈I1

ηi + γ)

k∏
l=2

ρ(
∑
i∈Il

ηi)λσ(dγ).
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Note that, in the second sum, the set I1 can take on the value I1 = ∅ in contrast to I2, . . . , Ik in the 3-d
sum. Changing the order of summations over indices I and over sets ξ, we may write

ρ̃Tj;m(η1; . . . ; ηm) = ze−βŴ (η1)j(x1)
∑

ξ≤
∑
i∈I1

ηi

∫
Γ0

λσ(dγ)K(x1; ξ + γ)

m−|I0(ξ)|∑
k=1

(−1)k−1(k − 1)!

×
∑

I1⊂{2,...,m}

∗∑
{I2,...,Ik}⊂{2,...,m}\(I0(ξ)∪I1)

ρ(η
′

1 +
∑

i∈(I0(ξ)∪I1)

ηi + γ)

k∏
l=2

ρ(
∑
i∈Il

ηi),

where we set I0(ξ) := {i ≥ 2 : ξ · ηi 6= 0}. Setting now η{2,...,m}\I := (ηi2 ; . . . ; ηim−|I|) if {2, . . . ,m} \ I =
{i2, . . . , im−|I|}, we arrive at

ρ̃Tj;m(η1; . . . ; ηm) =

ze−βŴ (η1)j(x1)
∑

ξ≤
m∑
i=2

ηi

∫
Γ

K(x1; ξ + γ)ρ̃Tm−|I0(ξ)|(η
′

1 +
∑

i∈I0(ξ)

ηi + γ; η{2,...,m}\I0(ξ))λσ(dγ).

Here is the final rewriting for the key equation (recursion relation)

ρ̃Tj;m(η1; . . . ; ηm) = ze−βŴ (η1)j(x1)

×
∑

I⊂{2,...,m}

∗∑
ξ≤

∑
i∈I

ηi

∫
Γ0

K(x1; ξ + γ)ρ̃Tj;m−|I|(η1 − 1{x1} +
∑
i∈I

ηi + γ; η{2,...,m}\I)λσ(dγ), (4.7)

where the asterisk over the second sum means that for all i ∈ I, ξ · ηi 6= 0. We emphasize that these
equations hold provided that |η1| > 0. They express the m-point j-PTCF ρ̃Tj;m in terms of the r-point

j-PTCF ρ̃Tj;r, r ≤ m. They therefore determine ρ̃Tj;m uniquely if the operator

f 7→ z e−βŴ (η)χj(η)(1− δ0(η))

∫
Γ0

K(x1; γ)f(γ + η − 1{x1})λσ(dγ),

has L1(Γ0, λσ)-norm less than 1. Here, δ0(η) := 1 if |η| = 0, δ0(η) := 0 otherwise.

Remark 4.1 We point out that (4.7) can be alternatively obtained by taking the derivatives of (4.3) with
respect to α2, . . . , αm, see (3.24)–(3.25), and by using (3.26) along with (4.6).

4.2 Solution in the thermodynamic limit.

Due to the assumption U(γ) = +∞ if γ(x) > 1 for some x ∈ Rd, see (3.3), we can restrict ourselves to
configurations such that γ ≤ 1. We then adopt set notation from now on and write γ for the set of points
x with γ(x) = 1.

Following the strategy used in [22], we seek a solution of the equation (4.7) in the form

ρ̃Tj;m(η1; . . . ; ηm) =

∫
Γ0

χj(

m⋃
i=1

ηi ∪ γ)Tm(η1; . . . ; ηm | γ)λσ(dγ), (4.8)

where Tm(η1; . . . ; ηm | γ), m ≥ 2 and γ ∈ Γ0 is a family of kernels such that

Tm(η1; . . . ; ηm | γ) = 0 if γ ∩ η 6= ∅, η :=

m⋃
i=1

ηi.

Inserting the expression (4.8) for ρ̃Tj;m and ρ̃Tj;m−|I| in both sides of (4.7) and then applying Lemma

2.2 (extended to the configuration space Γ0), we arrive at the following recursion relations for the kernels
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Tm(η1; . . . ; ηm | γ), owing to the arbitrariness of the function j,

Tm(η1; . . . ; ηm | γ) =

ze−βŴ (η1)
∑
ξ⊂γ

∑
I⊂{2,...,m}

∗∑
η⊂ηI

K(x1; η ∪ ξ)Tm−|I|(η′1 ∪ ηI ∪ ξ; η{2,...,m}\I | γ \ ξ), (4.9)

where η′1 = η1 \ {x1} (set notation) and where we set ηI :=
⋃
i∈I ηi. Subject to the initial conditions

T1(∅ | ∅) = 1, T1(∅ | γ) = 0 if γ 6= ∅, (4.10)

and also, for all m > 1,

Tm(η1; . . . ; ηm | γ) = 0 if γ 6= ∅ and ηi = ∅ for some i = 1, . . . ,m; (4.11)

the equation (4.9) has a unique solution due to its recursive structure. Indeed, these conditions follow
from the fact that ρj(∅) = 1 and ρ̃Tj;m(η1; . . . ; ηm) = 0 if ηi = ∅ for some i = 1, . . . ,m, see Remark 3.4.

The main result of this section is a uniqueness result in the infinite-volume limit (i.e., j → 1)

Theorem 4.2 Assume that the interaction potential φ satisfies (3.1) and (3.2). Given m ∈ N, m ≥ 2,
there exists, for all β > 0, a unique solution of the equation (4.7) in the thermodynamic limit j → 1,
which can be written in the form

ρ̃Tm(η1; . . . ; ηm) =

∫
Γ0

Tm(η1; . . . ; ηm | γ)λσ(dγ), (4.12)

where the family of kernels |Tm(η1; . . . ; ηm | γ)|, γ ∈ Γ0 is bounded above by a power series in the activity
z (with integrable coefficients) which converges in the region

ze2βB+2ν1(β) < 1. (4.13)

Here, B ≥ 0 and ν1(β) > 0 are respectively defined in (3.5) and (3.6).

The remaining of this paragraph is devoted to the proof of Theorem 4.2. For reader’s convenience,
the proofs of the intermediate results are placed in Sec. 4.3. Note that, in order to prove that (4.8)–(4.9)
with the conditions (4.10)–(4.11) is a solution of the equation (4.7) as j → 1, it is necessary to show that
the kernels Tm(η1; . . . ; ηm | γ) are integrable functionals of the variable γ with respect to the measure λσ.

Following [22], given h > 0 and any bounded nonnegative even function ν : Rd → [0,+∞), introduce
a new family of kernels Qm(η1; . . . ; ηm | γ), m ≥ 2 and γ ∈ Γ0 which are uniquely determined by the
following system of recursion relations

Qm(η1; . . . ; ηm | γ) = h
∑
ξ⊂γ

∑
I⊂{2,...,m}

∗∑
η⊂ηI

Kν(x1; η ∪ ξ)Qm−|I|(η′1 ∪ ηI ∪ ξ; η{2,...,m}\I | γ \ ξ), (4.14)

with initial conditions
Q1(∅ | ∅) = 1, Q1(∅ | γ) = 0 if γ 6= ∅, (4.15)

and also, for all m > 1,

Qm(η1; . . . ; ηm | γ) = 0 if γ 6= ∅ and ηi = ∅ for some i = 1, . . . ,m, (4.16)

where

Kν(x1; ξ) :=

{
1, if ξ = ∅,∏
x∈ξ

ν(x1 − x), if |ξ| ≥ 1. (4.17)

Since, by using assumption (3.5), we have from the expression (4.9)

|Tm(η1; . . . ; ηm | γ)| ≤ ze2βB
∑
ξ⊂γ

∑
I⊂{2,...,m}

∗∑
η⊂ηI

|K(x1; η ∪ ξ)||Tm−|I|(η′1 ∪ ηI ∪ ξ; η{2,...,m}\I | γ \ ξ)|,

the following result, which can be proven by induction, is straightforward
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Lemma 4.3 Assume that the interaction potential φ satisfies (3.1)–(3.2). Given β > 0 and z > 0, set

ze2βB = h and |e−βφ(|x−y|) − 1| = ν(x− y), (4.18)

where B ≥ 0 is defined in (3.5). Then, given m ∈ N, m ≥ 2 and γ ∈ Γ0, the following holds,

|Tm(η1; . . . ; ηm | γ)| ≤ Qm(η1; . . . ; ηm | γ). (4.19)

The solution Qm(η1; . . . ; ηm | γ) of the equation (4.14) with conditions (4.15)–(4.17) can be written
with the help of forest graphs. For each set of clusters {η1; . . . ; ηm} with ηj ∈ (Γ0\∅) and each configuration
γ ∈ Γ0, we define the set of forest graphs S(η1; . . . ; ηm | γ) in the following way. The connected

components of the graphs f̃ ∈ S(η1; . . . ; ηm | γ) are tree graphs with vertices given by points of
⋃m
i=1 ηi∪γ,

and such that there are no lines (or edges) connecting vertices of the same cluster ηi (for i = 1, . . . ,m).
Each tree contains a point of

⋃m
i=1 ηi and, if i0 is the lowest index such that ηi0 contains a point of the

tree, then this point is unique (the root of the tree). Moreover, for every other vertex z of the tree there
is a path z1, . . . , zk such that zk = z, and there is an edge between the root x0 and z1 and between each
pair zp and zp+1, and such that if zp ∈ ηip then, if zp+1 ∈ ηip+1

then zp is the only point in ηip connected
to a point in ηip+1

by a line in the forest, whereas if zp+1 ∈ γ then zp is the only point in ηip to which
it is connected by a line in the forest. Note that a single point x ∈

⋃m
i=1 ηi is also a tree with analytic

contribution h. Finally, if all points of the configurations ηi (for every i = 1, . . . ,m) are combined into

one single vertex, then the forest graph f̃ ∈ S(η1; . . . ; ηm | γ) reduces to a connected tree graph with
m+ n vertices, where n = |γ|.

With the above notation, we now establish the following lemma

Lemma 4.4 The solution of the equation (4.14) with conditions (4.15)–(4.17) can be written as

Qm(η1; . . . ; ηm | γ) =
∑

f̃∈S(η1;...;ηm|γ)

Gν(f̃), (4.20)

where the analytic contribution of a forest graph f̃ ∈ S(η1; . . . ; ηm | γ), denoted by Gν(f̃), is given by

Gν(f̃) = Gν(f̃ ; η1; . . . ; ηm | γ) = hl+|γ|
∏

(x,y)∈E(f̃)

ν(x− y), (4.21)

where E(f̃) denotes the set of the edges of f̃ , and where,

l :=
m∑
i=1

li with li := |ηi|, i = 1, . . . ,m. (4.22)

Individual analytic contributions are easily estimated

Lemma 4.5 Set

ν0 := max
x∈Rd

ν(x) < +∞, (4.23)

ν1 :=

∫
Rd
ν(x) dx < +∞. (4.24)

Then, given a forest graph f̃ ∈ S(η1; . . . ; ηm | γ) with |γ| = n ∈ N,∫
Rdn

Gν(f̃ ; η1; . . . ; ηm | {y1, . . . , yn}) dy1 · · · dyn ≤ hl+nν
|Eη(f̃)|
0 νn1 , (4.25)

where l is defined in (4.22), and

|Eη(f̃)| ≤ l − l1, η :=

m⋃
i=1

ηi,

stands for the number of edges in which one or two ends belong to the set
⋃m
i=1 ηi.
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It remains to estimate the number of forest graphs at fixed configurations
⋃m
i=1 ηi∪γ. We denote this

number by N
(m)
n (l1, . . . , lm), li := |ηi| and prove the following combinatoric lemma.

Lemma 4.6 Let n ∈ N0 and m ∈ N, m ≥ 2. Set Li := 2li − 1 for i = 2, . . . ,m. Then,

N (m)
n (l1; . . . ; lm) = l1(

m∏
i=2

Li)

(
m∑
i=1

li + n

)m+n−2

. (4.26)

Remark 4.7 We point out that (4.26) is a generalization of (well-known) Cayley’s formula for the
number of tree graphs with n ≥ 2 vertices

Kn = nn−2,

for the case of forest graphs of a system of m clusters (ηi)
m
i=1 and n single vertices with li = |ηi|, n = |γ|.

We finally turn to
Proof of Theorem 4.2. Assume that the interaction potential φ satisfies (3.1)–(3.2). Let β > 0 and
z > 0 satisfying (4.13). In view of (4.18) and (4.23)–(4.24), set

ν0(β) := max
x∈Rd

νβ(x) = max
x∈Rd

|e−βφ(|x|) − 1| < +∞.

Note that ν1(β) > 0 is defined in (3.6). From (4.19) along with (4.20), we have,

|Tm(η1; . . . ; ηm | γ)| ≤ Qm(η1; . . . ; ηm | γ) =
∑

f̃∈S(η1;...;ηm|γ)

Gν(f̃),

where Gν(f̃) is a monomial in z of order l + n. Inserting now the bounds (4.25) and (4.26), we get,

|ρ̃Tm(η1; . . . ; ηm)| ≤
(
2ze2βB

)l
(ν0(β))

l−l1
∞∑
n=0

(l + n)m+n−2

n!

(
ze2βBν1(β)

)n
,

where we replaced νk by νk(β), k = 0, 1. Applying Stirling formula, i.e., n! > nne−n
√

2πn, we have,

|ρ̃Tm(η1; . . . ; ηm)| ≤
(
2ze2βB+1

)l
(ν0(β))

l−l1 lm−2
∞∑
n=0

(
ze2βB+2ν1(β)

)n
.

Note that, we also used the bound (1 + n
l )m−2 ≤ en which follows from l ≥ m− 2. �

We conclude this section by

Remark 4.8 Analogous to (4.20), there is an analytic expression for the kernels Tm(η1; . . . ; ηm | γ) in
terms of forest graphs

Tm(η1; . . . ; ηm | γ) =
∑

f̃∈S(η1;...;ηm|γ)

GC(f̃), (4.27)

where the contribution Cxy for an edge of GC(f̃) connecting vertices x and y is given by (3.18), and

where the analytic expression for GC(f̃) has the more complicated form

GC(f̃) = GC(f̃ ; η1; . . . ; ηm | γ) = zl+n
∏

(x,y)∈E(f̃)

Cxy
∏

(x,y)∈S(f̃)

e−βφ(|x−y|), (4.28)

where S(f̃) denotes the set of pairs of points of the set
⋃m
i=1 ηi ∪ γ for which there are no edges in the

graph forest f̃ .

Remark 4.9 Obviously, ordinary truncated (connected) correlation functions are a special case obtained
by taking η1 = {x1}, . . . , ηm = {xm} in (4.27) and (4.28). In this case, each term of the expansion is the
sum of the contributions of the connected Cayley tree-graphs, and the expansion itself coincides with that
obtained by O. Penrose in [27].
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4.3 Proof of Lemmas 4.4, 4.5 and 4.6.

Proof of Lemma 4.4. The proof is done by induction on n = |γ|. Consider first the case n = 0, so
γ = ∅. The equation (4.14) reduces then to

Qm(η1; . . . ; ηm | ∅) = h
∑

I⊂{2,...,m}

∗∑
η⊂ηI

Kν(x1; η)Qm−|I|(η
′
1 ∪ ηI ; η{2,...,m}\I | ∅). (4.29)

In particular, Q1(η1 | ∅) = hQ1(η′1 | ∅), so that Q1(η1 | ∅) = h|η1|. This agrees with (4.20) since the
only allowed tree consists of individual points x ∈ η1. We now do induction on m and l1 = |η1|. For
m = 1, we already have that Q1(η1 | ∅) = hl1 . Assuming that Q1 . . . , Qm−1 are given by the sum of
forest contributions when γ = ∅, the terms in (4.29) correspond to the construction of a forest on

⋃m
i=1 ηi

as follows. The point x1 is connected to a set of points η outside η1. If I is the set of indices such that
η ∩ ηi 6= ∅, then in Qm−|I|(η

′
1 ∪ ηI ; ηIc | ∅) there are no more connections within η′1 ∪ ηI , i.e., between

any other points of η1 and points of ηI or between two points of ηI . In Qm−|I| either m − |I| < m or
I = ∅, in which case the first subset is η′1 and |η′1| < |η1|. Therefore, by the induction hypothesis, its
contributions are forest graphs with vertices in η′1∪

⋃m
i=2 ηi such that each tree contains at most one point

of η′1 ∪ ηI . This means that when the connections with x1 are added, the resulting graph still consists of

separate trees. Denote the resulting forest graph on
⋃m
i=1 ηi by f̃ . If x 6= x1 is a vertex in f̃ , then by the

induction hypothesis, there is a sequence of points z0 ∈ η′1 ∪
⋃m
i=2 ηi, z1, . . . , zk ∈ ηIc such that zk = x

and if zp ∈ ηip (p = 0, . . . , k) then zp is the unique point in ηip connected to a point in ηip+1
by a line

in f̃ (note that z0 = x if x ∈ η′1 ∪ ηI .) Now, if z0 ∈ η′1 or z0 ∈ ηi \ η, then it is the root of a tree in f̃ .
If z0 ∈ ηi ∪ η then x1 is the root of the tree containing x and there is no other point x′ ∈ η′1 connected

to a point in ηi by a line in f̃ . Collapsing the points of {x1} ∪ η to a single point, the forest reduces to

a forest on η′1 ∪ ηI and
⋃
i∈{2,...,m}\I ηi because there are no more edges in f̃ between points of η1 ∪ ηI .

The resulting forest is precisely one of the contributions to Qm−|I|(η
′
1 ∪ ηI ; ηIc | ∅). If each ηi is reduced

to a point, the resulting graph is connected by induction except possibly in the case that η1 = {x1} and
η = ∅. But in that case, if m > 1, the contribution Qm(η′1; η2; . . . ; ηm|∅) = 0 since η′1 = ∅. The powers of
h are obviously correct.
It remains to do induction on n. The term ξ = ∅ gives the contribution

h
∑

I⊂{2,...,m}

∗∑
η⊂ηI

Kν(x1; η)Qm−|I|(η
′
1 ∪ ηI ; η{2,...,m−k}\I | γ).

This is similar to the case γ = ∅. It corresponds to the case where x1 is only connected to points in⋃m
i=2 ηi, and the remaining tree after collapsing the points {x1} ∪ ηI gives the stated contribution by

induction, since either m − |I| < m or |η′1| < |η1|. Once again the contribution of I = ∅ is zero if
η1 = {x1}. The other terms are more complicated. Now, x1 is connected to a set of points ξ ⊂ γ as well
as a set of points η ⊂

⋃m
i=2 ηi. Collecting the points of {x1}∪ ξ∪η into a single vertex, the corresponding

forest is just the contribution to Qm−|I|(η
′
1 ∪ ηI ∪ ξ; ηIc | γ \ ξ) by induction since |γ \ ξ| < n. For y ∈ ξ,

there are no more lines between other points of η1 and y. Also, there are no more lines connecting x ∈ ηI
to another point of η1. It remains to show that upon collapsing the points of each ηi to a single vertex,
the resulting graph is a connected tree. This is more intricate. We first prove connectedness. Suppose
there is an index set J ⊂ {1, . . . ,m} (with 1 ∈ J) and a subset ζ ⊂ γ such that J 6= {1, . . . ,m} or ζ 6= γ
and there are no lines between points of ηJ ∪ ζ and points in the complement. Clearly, I ⊂ J since the
points of η are connected to x1 (due to the factor Kν(x1; ξ ∪ η)) and η ∩ ηi 6= ∅ for i ∈ I. Also ξ ⊂ ζ
for the same reason. By the induction hypothesis for Qm−|I|(η

′
1 ∪ ηI ∪ ξ; ηIc | γ \ ξ), there are no sets

J ′ ⊃ I and ζ ′ ⊂ γ \ ξ without external lines, other than the trivial J ′ = ∅ and ζ ′ = ∅ or J ′ = I ∪ Ic
and ζ ′ = γ \ ξ. Therefore J ⊃ {2, . . . ,m} and γ \ ξ ⊂ ζ, or J ∩ {2, . . . ,m} = ∅ and ζ ⊂ γ \ ξ. In
the first case J = {1, . . . ,m} and ζ = γ, which contradicts the initial assumption. In the second case,
J = {1} and ξ = ∅, and since I ⊂ J , I = ∅. The corresponding contribution equals zero as above, since
then η′1 ∪ ηI ∪ ξ = ∅. To see that the resulting graph is a tree, note that in any contributing forest to
Qm−|I|(η

′
1 ∪ ξ∪ ηI ; ηIc | γ \ ξ) there is just one line between a point of η′1 ∪ ξ∪ ηI and a tree on ηIc ∪γ \ ξ.

The factor Kν(x1; ξ ∪ η) gives lines between x1 and the points of ξ ∪ η, and therefore to only one point
of this tree. �
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Proof of Lemma 4.5. We only give the main arguments. If yi is an end vertex of a tree in the forest
f̃ , then a contribution involving the factor ν1 arises. The same holds if, from yi outwards, there are only
vertices yk since we can integrate them successively. In the case when yi lies between the points xi and
xk in

⋃m
i=1 ηi, we first use the inequality ν(yi − xk) ≤ ν0. �

Proof of Lemma 4.6. From (4.14), it can be seen that N
(m)
n (l1; . . . ; lm) satisfies the recurrent relations

N (m)
n (l1; . . . ; lm) =

n∑
k=0

(
n

k

) ∑
I⊂{2,...,m}

LIN
(m−|I|)
n−k (l1 + lI + k − 1; li2 ; . . . ; lim−|I|), (4.30)

where we denote LI :=
∏
i∈I Li, lI :=

∑
i∈I li (with the convention l∅ := 0) and {i2, . . . , im−|I|} :=

{2, . . . ,m} \ I. Hereafter, we set l :=
∑m
i=1 li. Let us introduce new numbers Ñ

(m)
n (l1; . . . ; lm) in such a

way that

N (m)
n (l1; . . . ; lm) = (

m∏
i=2

Li)Ñ
(m)
n (l1; . . . ; lm).

Then, the recurrent relations (4.30) can be rewritten in the following way,

Ñ (m)
n (l1; . . . ; lm) =

n∑
k=0

(
n

k

) ∑
I⊂{2,...,m}

Ñ
(m−|I|)
n−k (l1 + lI + k − 1; li2 ; . . . ; lim−|I|). (4.31)

We now prove that, given the initial condition Ñ
(1)
0 (l1) = 1,

Ñ (m)
n (l1; . . . ; lm) = l1(

m∑
i=1

li + n)m+n−2 (4.32)

is the solution of the recurrent relations (4.31). Inserting the identity

Ñ
(m−|I|)
n−k (l1 + lI + k − 1; li2 ; . . . ; lim−|I|) = (l1 + lI + k − 1)(l + n− 1)m+n−k−|I|−2,

in the right-hand side of (4.31), we obtain,

Ñ (m)
n (l1; . . . ; lm) =

3∑
i=1

Mi,

where,

M1 :=

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

∑
I⊂{2,...,m}

l1(l + n− 1)m−|I|−1,

M2 :=

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

∑
I⊂{2,...,m}

lI(l + n− 1)m−|I|−1,

M3 :=

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

∑
I⊂{2,...,m}

(k − 1)(l + n− 1)m−|I|−1.

Now, in M2 we first sum over sets I with |I| = p using

∑
I⊂{2,...,m}
|I|=p

lI =

(
m− 2

p− 1

) m∑
i=2

li =

(
m− 2

p− 1

)
(l − l1).
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In the other two sums, this summation is easy, and we obtain

M1 = l1

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

m−1∑
p=0

(
m− 1

p

)
(l + n− 1)m−p−1

= l1

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1(l + n)m−1 = l1(l + n− 1)−1(l + n)m+n−1,

M2 = (l − l1)

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

m−1∑
p=1

(
m− 2

p− 1

)
(l + n− 1)m−p−1

= (l − l1)(l + n− 1)−1(l + n)m+n−2,

M3 =

n∑
k=0

(
n

k

)
(l + n− 1)n−k−1

m−1∑
p=0

(
m− 1

p

)
(k − 1)(l + n− 1)m−p−1

=

n∑
k=0

(
n

k

)
(k − 1)(l + n− 1)n−k−1(l + n)m−1 = −l(l + n− 1)−1(l + n)m+n−2,

where we used the identity

n∑
k=0

(
n

k

)
(k − 1)(l + n− 1)n−k−1 = −l(l + n− 1)−1(l + n)n−1.

We conclude that
∑3
i=1Mi = l1(l + n)m+n−2 which completes the induction. This proves (4.32). �

5 Strong decay properties for PTCF.

Theorem 4.2 states the existence of a unique solution to the equation (4.7) in the form of convergent
expansions, see (4.12) with Remark 4.8 and also (4.19) with (4.20)–(4.21). The most important property
of the PTCF is their decay as the distances between the clusters increases, i.e., dist(ηi, ηj)→ +∞, i 6= j.

5.1 Polynomial decay for PTCF.

We start by formulating the main result of Sec. 5

Theorem 5.1 Suppose that the interaction potential φ satisfies (3.5) and (3.6). Assume in addition that
there exists α > d and, for all β > 0, there exists a constant C(β) > 0 such that

νβ(x) := |e−βφ(x) − 1| ≤ C(β)ν(x),

with

ν(x) :=
1

1 + |x|α
, x ∈ Rd. (5.1)

Then, provided that,
ze2βB [ν1(β)e + ν1(β)(e + 21+α)] < 1,

where B ≥ 0 is defined in (3.5), ν1(β) > 0 in (3.6) and

ν1(β) := C(β)ν1, ν1 :=

∫
Rd
ν(x) dx < +∞,

there exist, given m ∈ N with m ≥ 2, constants Am,σ = Am,σ(β, z, α) > 0, 1 ≤ σ ≤ m such that the
PTCF in (4.12) admit the following bounds

|ρ̃Tm(η1; . . . ; ηm)| ≤
m∑
σ=1

Am,σ max
Tm∈Tm

νTm ,

where Tm denotes the set of trees on m points, and

νTm :=
∏

(i,j)∈Tm

max
xi∈ηi;xj∈ηj

ν(xi − xj).
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Remark 5.2 Explicit upper bounds for the constants Am,σ are derived in the proof. Setting

ze2βB = h, ν1(β) = ν1, C(β) = C,

A2,σ with σ = 1, 2 are given in (5.12), A3,σ with σ = 1, 2, 3 are given in (5.19), (5.20) and (5.21), and
for any m ≥ 4, Am,1, Am,2 and Am,σ with 3 ≤ σ ≤ m are given in (5.23), (5.25) and (5.34) respectively.
To derive these upper bounds, we use the combinatoric identities (5.33).

The rest of Sec. 5 is devoted to the proof of Theorem 5.1. It is organized as follows. We first establish
two technical results, see Lemma 5.3 and Proposition 5.1 below. Subsequently, we prove Theorem 5.1 in
the case m = 2, m = 3 and the general case m ≥ 4 in Sec. 5.2, 5.3 and 5.4 respectively.

We point out that, from (4.12) with (4.9) (and the conditions (4.10)–(4.11)), it is sufficient, by virtue
of Lemma 4.3, to work with the family of kernels in (4.14) (with the conditions (4.15)–(4.17)).

Consider for instance forest graphs f̃ ∈ S(η1; . . . ; ηm | {y1}). Restricting the diagram to
⋃m
i=1 ηi, one

obtains a forest on
⋃m
i=1 ηi of which some trees are connected by an edge in f̃ to y1. If there is just one

such edge, the corresponding contribution is obtained from that of the restricted forest by multiplying by
ν(xj − y1) if xj is the vertex attached to y1. In general, one has to multiply by a factor

∏p
r=1 ν(xjr − y1).

In the former case, integration with respect to the variable y1 simply multiplies the contribution of the
diagram from S(η1; . . . ; ηm | ∅) by the factor ν1, see (4.24). In the general case, we need to consider
integrals of the form ∫

Rd

p∏
r=1

ν(xr − y) dy. (5.2)

In case that the kernel ν has a polynomial decay, terms of type (5.2) can be easily estimated

Lemma 5.3 Let ν be the kernel in (5.1) with α > d. Then, for all p ∈ N, p ≥ 2 and x1, . . . , xp ∈ Rd,∫
Rd

p∏
r=1

ν(xr − y) dy ≤ 2α(p−1)ν1

p∑
r=1

p∏
k=1
k 6=r

ν(xk − xr). (5.3)

Proof. We subdivide the integral with respect to y into domains where |y−xr| < maxk 6=r |y−xk|. Then,
|xk − y| > 1

2 |xk − xr| and the inequality (5.3) easily follows from

1

|xk − y|α + 1
<

1

( 1
2 |xk − xr|)α + 1

<
2α

|xk − xr|α + 1
. �

To count the possible diagrams, we will first isolate the parts of the diagram consisting of trees with
vertices in γ except possibly one endpoint. This can be done as follows. Define

Qm(η1; . . . ; ηm | 0) := Qm(η1; . . . ; ηm | ∅),

Qm(η1; . . . ; ηm | n) :=

∫
Rdn

Qm(η1; . . . ; ηm | {y1, . . . , yn}) dy1 · · · dyn, n ∈ N,
(5.4)

where the family of kernels Qm(η1; . . . ; ηm | γ), m ≥ 2 and γ ∈ Γ0 is given in (4.14) with the conditions
(4.15)–(4.17). It then satisfies the following recursion relation

Qm(η1; . . . ; ηm | n) = h
∑

I⊂{2,...,m}

K(0)(x1; ηI)

×
n∑
k=0

(
n

k

)∫
Rdk

k∏
j=1

Kν(x1; yj)Qm−|I|(η
′
1 ∪ ηI ∪ {y1, . . . , yk}; η{2,...,m}\I | n− k) dy1 · · · dyk, (5.5)

where it is understood that the term k = 0 in the sum reduces to Qm−|I|(η
′
1 ∪ ηI ; η{2,...,m}\I | n), and

K(0)(xi; ∅) := 1, i ∈ {1, . . . ,m},

K(0)(xi; ηI) :=

∗∑
η⊂ηI

Kν(xi; η) =

∗∑
η⊂ηI

∏
x∈η

ν(xi − x), I ⊂ {1, . . . ,m} \ {i}.
(5.6)

We then establish
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Proposition 5.1 Given n ∈ N0, the solution of the recursion relation (5.5) can be expressed as

Qm(η1; . . . ; ηm | n) = hl
n∑
k=0

(
n

k

)
k!N

(1)
n−k(l + k)(hν1)n−kQ̃m(η1; . . . ; ηm | k),

where l is defined in (4.22), ν1 in (4.24), N
(1)
k′ with 0 ≤ k′ ≤ n is given by (4.26), and Q̃m(η1; . . . ; ηm | k)

consists of the contributions from all forest graphs in S(η1; . . . ; ηm | {y1, . . . , yk}) in which all vertices of
yi of γ are connected to at least two other vertices.

Proof. This can be proved inductively from the formula (5.5). However, it is also easily understood
graphically as follows. Given a forest graph in S(η1; . . . ; ηm | {y1, . . . , yn}), consider the points of
γ = {y1, . . . , yn} connected to only one other vertex (endpoints). These are parts of trees on γ with a
single base point either in γ or in

⋃m
i=1 ηi. Starting at the endpoints, the corresponding points yi can easily

be integrated, yielding factors hν1. In the remaining graph, each point of γ is connected to at least two
other vertices. We denote the contribution of this graph by Q̃m(η1; . . . ; ηm | k), where k is the number
of remaining vertices in γ. Conversely, given a forest graph in S(η1; . . . ; ηm | {y1, . . . , yk}) in which
each point yi (i = 1, . . . , k) is connected to at least two other vertices, we obtain the contribution from
graphs in S(η1; . . . ; ηm | {y1, . . . , yn}) with n ≥ k, containing this graph and such that all other points
yk+1, . . . , yn are in trees with a single base point, by counting the number of possibilities of attaching
trees to the given tree with total number of vertices equal to n−k. But this number is given precisely by(

n

k

)
k!N

(1)
n−k(l + k)(hν1)n−k.

Indeed, we can choose which of the total of n points belongs to the original graph in
(
n
k

)
ways and order

them in k! ways. The number of ways of forming trees out of the remaining n− k points is then given by

N
(1)
n−k(l + k), because for this purpose we can consider all points of the original graph as belonging to a

single cluster as they cannot be connected further to each other. There are obviously l+k such points to

be connected to a further n−k external points. By Lemma 4.6, this can be done in N
(1)
n−k(l+k) ways. �

5.2 The case m = 2.

There are two possibilities: either there is at least one line between η1 and η2 in the forest, or there
is none. In the first case, the restriction of the forest to γ splits into separate trees, each of which is
connected to a single point of either η1 or η2. In the second case, the restriction to γ also splits into
separate trees, but one of these is connected to a single point of η1 as well as one or more points of η2.
The others are again connected to a single point of either η1 or η2. The trees connected to a single point
are easily integrated out, giving rise to factors ν1. If there is a tree connecting η1 and η2 then there is
one point y1 of that tree in γ connected to a point of η1 and one point y2 ∈ γ connected to one or more
points of η2 (y1 can be equal to y2). In that case, there is a unique path in the tree connecting y1 to
y2. The remaining part of the tree consists of individual trees connected to single points of this path (or
points of η1 ∪ η2). These can be integrated out giving factors ν1 as before. In terms of Proposition 5.1,

Q2(η1; η2 | n) = hl
n∑
k=0

(
n

k

)
k!N

(1)
n−k(l + k)(hν1)n−kQ̃2(η1; η2 | k), n ∈ N0, (5.7)

with
Q̃2(η1; η2 | k) :=

∑
x1∈η1

K(k)(x1; η2), 0 ≤ k ≤ n,

where K(0)(xi; ηj), xi ∈ ηi and i 6= j is given in (5.6) and K(k)(xi; ηj), xi ∈ ηi and i 6= j are defined as

K(k)(xi; ηj) := hk
∫
Rdk

ν(xi − y1)

k−1∏
r=1

ν(yr − yr+1)K(0)(yk; ηj) dy1 · · · dyk, k ≥ 1. (5.8)

Assume now that ν is polynomially bounded, i.e. ν(x) ≤ Cν(x) with ν in (5.1) for some constant C > 0
and α > d. Integrating over the points on the path from y1 to yk−1, Lemma 5.3 yields factors 21+αCν1

K(k)(x1; η2) ≤ (hC)k(21+αν1)k−1

∫
Rd
ν(x1 − y)K(0)(y; η2) dy, k ≥ 1. (5.9)
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Here, we also used the bound ν ≤ 1. The integral in (5.9) can be estimated as follows. From (5.6),

K(0)(y; ηi) ≤
∑
xi∈ηi

∑
η′⊂(ηi\{xi})

C |η
′|+1ν(y − xi) ≤ C(1 + C)li−1

∑
xi∈ηi

ν(y − xi). (5.10)

Inserting (5.10) in (5.9) and then using Lemma 5.3 again, we obtain the common upper bound

K(k)(x1; η2) ≤ (hν121+αC)kC(1 + C)l2−1
∑
x2∈η2

ν(x1 − x2), 0 ≤ k ≤ n. (5.11)

In summing over the trees connected to a single point of this path, the number of vertices in these trees
is unlimited. This means that we can consider these trees individually, having base points on the k + l
points of the path from η1 to η2 and containing ni + 1 points (i = 1, . . . , k + l). There are (ni + 1)ni−1

such trees for each i, so we now have in total,

|ρ̃T2 (η1; η2)| ≤ C(1 + C)l2−1hl
∑
x1∈η1

∞∑
k=0

(hν121+αC)k
∞∑

n1,...,nk+l=0

k+l∏
i=1

(ni + 1)ni−1(hν1)ni

ni!

∑
x2∈η2

ν(x1 − x2).

Here, there is a factor n!
k!n1!...nk+l!

for the number of ways of distributing the vertices in γ over the

individual trees and the remaining k points of γ and a factor k! for the number of ways of ordering the
vertices in the path connecting the two clusters as well as a factor 1

n! from the definition of the correlation
function. Using now that (k + 1)k−1 ≤ k!ek for k ≥ 1, we obtain,

|ρ̃T2 (η1; η2)| ≤ l1l2C(1 + C)l2−1hl
∞∑
k=0

(
hν121+αC

)k( ∞∑
n=0

(hν1e)n

)k+l

max
x1∈η1; x2∈η2

ν(x1 − x2).

Here, we assumed that h(ν1e + ν121+αC) < 1. Theorem 5.1 in the case m = 2 is proven by setting

A2,1 = A2,2 :=
1

2
l1l2C(1 + C)l2−1

(
h

1− hν1e

)l
1− hν1e

1− hν1e− hν121+αC
. (5.12)

Remark 5.4 Comparing the above formula with expression (5.7), we have the remarkable identity,

N (1)
n (l) =

∑
n1,...,nl≥0
l∑
i=1

ni=n

n!

n1! · · ·nl!

l∏
i=1

(ni + 1)ni−1,

where we replaced n− k by n and k + l by l.

5.3 The case m = 3.

Here, the situation is not too much more complicated. The cases where there is a line between at least
one pair of η1, η2 and η3 reduce to the case m = 2. There remains the case that there is a tree on γ
which is connected to all three. Again, this tree has only one point in γ which connects to ηi for each
i = 1, 2, 3, and by integrating out over intermediate y’s which connect to only two others, this reduces to
the case where these three points coincide. Assuming that the points connecting the tree to η1, η2 and η3

are different points y1, y2 and y3, there are 3 possible permutations of these points, and we can integrate
out any intermediate points as before, yielding factors 21+αν1. In terms of Proposition 5.1, we have,

Q3(η1; η2; η3 | n) = hl
n∑
k=0

(
n

k

)
k!N

(1)
n−k(l + k)(hν1)n−kQ̃3(η1; η2; η3 | k), n ∈ N0, (5.13)

where Q̃3(η1; η2; η3 | k) is the contribution from all forest graphs in S(η1; η2; η3 | {y1, . . . , yk}), in which
all vertices yi of γ are connected to at least two other vertices. Integrating out the vertices of γ connected
to only 2 others yields factors 21+αν1 and results in a tree on γ where every vertex is connected to at
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least 3 others. There is only one such tree. It consists of a single point y of γ connected to η1, η2 and η3.
Conversely, given this tree, one can form trees with additional vertices connected to two points by adding
a sequence of points between y and η1, η2 and η3. In total, Q̃3(η1; η2; η3 | k) is the sum of 3 contributions

Q̃3(η1; η2; η3 | k) = Q̃3,1(η1; η2; η3 | k) + Q̃3,2(η1; η2; η3 | k) + Q̃3,3(η1; η2; η3 | k), (5.14)

where Q̃3,3(η1; η2; η3 | k) contains the contributions of terms where there is no connection inside η1∪η2∪η3

(3 components), Q̃3,2(η1; η2; η3 | k) corresponds to the terms where there is one or more line(s) between

one pair of η1, η2 and η3 (2 components), and Q̃3,1(η1; η2; η3 | k) contains the contributions where all 3
clusters are connected by lines inside η1 ∪ η2 ∪ η3. In the latter, we must have k = 0 since there cannot
be another (outside) connection between two ηi’s. From (5.14), (5.13) is the sum of three contributions

Q3,1(η1; η2; η3 | n) :=hlQ̃3,1(η1; η2; η3 | 0),

Q3,i(η1; η2; η3 | n) :=hl
n∑
k=0

(
n

k

)
k!N

(1)
n−k(l + k)(hν1)n−kQ̃3,i(η1; η2; η3 | k), i = 2, 3.

In the case when all three clusters are connected,

Q̃3,1(η1; η2; η3 | 0) =
∑
x1∈η1

∗∑
η′2⊂η2

∗∑
η′3⊂η3

 ∏
x2∈η′2

ν(x1 − x2)
∑
x′1∈η1

∏
x3∈η′3

ν(x′1 − x3)

+
∏
x2∈η′2

ν(x1 − x2)
∑
x′2∈η2

∏
x3∈η′3

ν(x′2 − x3) +
∏
x3∈η′3

ν(x1 − x3)
∑
x′3∈η3

∏
x2∈η′2

ν(x′3 − x2)

 .

Assume that ν(x) ≤ Cν(x) with ν as in (5.1) for some constant C > 0 and α > d. From (5.10) together
with the following upper bound on the sum over trees

hl
∞∑
n=0

(hν1)n

n!
N (1)
n (l) ≤ hl

∞∑
n1,...,nl=0

l∏
i=1

(hν1)ni

ni!
(ni+1)ni−1 ≤ hl

l∏
i=1

∞∑
ni=0

(hν1e)ni =

(
h

1− hν1e

)l
, (5.15)

and ∑
xi∈ηi

∑
xj∈ηj

ν(xi − xj) ≤ lilj max
xi∈ηi; xj∈ηj

ν(xi − xj), i 6= j,

we then obtain,

∞∑
n=0

1

n!
Q3,1(η1; η2, η3 | n)

≤l1l2l3C2(1 + C)l2+l3−2

(
h

1− hν1e

)l{
l1 max
x1∈η1; x2∈η2

ν(x1 − x2) max
x1∈η1; x3∈η3

ν(x1 − x3)

+ l2 max
x1∈η1; x2∈η2

ν(x1 − x2) max
x2∈η2; x3∈η3

ν(x2 − x3) + l3 max
x1∈η1; x3∈η3

ν(x1 − x3) max
x3∈η3; x2∈η2

ν(x3 − x2)

}
≤l1l2l3(l1 + l2 + l3)C2(1 + C)l2+l3−2

(
h

1− hν1e

)l
max
T3∈T3

νT3
. (5.16)

In the cases where only one pair of η1, η2 and η3 are connected, we have, for all 0 ≤ k ≤ n,

Q̃3,2(η1; η2; η3 | k) :=
∑
x1∈η1

{
K(0)(x1; η2)

∑
x∈η1∪η2

K(k)(x; η3) +K(0)(x1; η3)
∑

x∈η1∪η3

K(k)(x; η2)

+ K(k)(x1; η2)
∑
x2∈η2

K(0)(x2, η3) +K(k)(x1; η3)
∑
x3∈η3

K(0)(x3; η2)

}
,
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where the kernels K(0) and K(k), k ≥ 1 are defined in (5.6) and (5.8) respectively. As in the case m = 2,
we now use the assumption that ν(x) ≤ Cν(x) with ν as in (5.1) for α > d and some constant C > 0.
Then the kernels K(k), 0 ≤ k ≤ n are estimated as in (5.11). Therefore,

Q̃3,2(η1; η2; η3 | k) ≤ l1C2(1 + C)l2+l3−2(hν121+αC)k

×
{
l2(l1 + l2)l3 max

x1∈η1; x2∈η2

ν(x1 − x2) max
x∈η1∪η2; x3∈η3

ν(x− x3)

+ l3(l1 + l3)l2 max
x1∈η1; x3∈η3

ν(x1 − x3) max
x∈η1∪η3; x2∈η2

ν(x− x2)

+l22l3 max
x1∈η1; x2∈η2

ν(x1 − x2) max
x′2∈η2; x3∈η3

ν(x′2 − x3) + l23l2 max
x1∈η1; x3∈η3

ν(x1 − x3) max
x′3∈η3; x2∈η2

ν(x2 − x′3)

}
.

It remains to sum over the external trees, see (5.15), and we obtain,

∞∑
n=1

1

n!
Q3,2(η1; η2; η3 | n)

≤ 2l1l2l3(l1 + l2 + l3)C2(1 + C)l2+l3−2

(
h

1− hν1e

)l
hν121+αC

1− hν1e− hν121+αC
max
T3∈T3

νT3 . (5.17)

Here, we assumed that h(ν1e + ν121+αC) < 1.
There remains the case where there is no line between any points of η1 ∪ η2 ∪ η3. As explained earlier,

Q̃3,3(η1; η2; η3 | k) =
∑
x1∈η1

∑
k1,k2,k3≥0

k1+k2+k3=k−1

h

∫
Rd
K(k1)(x1, y)K(k2)(y; η2)K(k3)(y; η3) dy, 0 ≤ k ≤ n,

where we set K(k)(x, y) := K(k)(y; {x}). Inserting the bound (5.11), we get,

Q̃3,3(η1; η2; η3 | k)

≤C3(1 + C)l2+l3−2
∑
x1∈η1

∑
k1,k2,k3≥0

k1+k2+k3=k−1

(hν121+αC)k−1h

∫
Rd
ν(x1 − y)

3∏
i=2

∑
xi∈ηi

ν(xi − y) dy

≤l1l2l322αC3(1 + C)l2+l3−2hν1

∑
k1,k2,k3≥0

k1+k2+k3=k−1

(hν121+αC)k−1

× max
x1∈η1; x2∈η2; x3∈η3

{ν(x1 − x2)ν(x1 − x3) + ν(x1 − x2)ν(x2 − x3) + ν(x1 − x3)ν(x2 − x3)} .

Summing over trees attached to points of these paths, summing over n′ := n− k and using (5.15),

∞∑
n=1

1

n!
Q3,3(η1; η2; η3 | n)

≤ 3l1l2l322αC3(1 + C)l2+l3−2
∞∑
n=1

n∑
k=1

hl(hν1)

(n− k)!
N

(1)
n−k(k + l)(hν1)n−k

∑
k1,k2,k3≥0
3∑
i=1

ki=k−1

(hν121+αC)k−1 max
T3∈T3

νT3

≤ 3l1l2l322αC3(1 + C)l2+l3−2 hl(hν1)

(1− hν1e)l+1

∞∑
k=1

∑
k1,k2,k3≥0
3∑
i=1

ki=k−1

(
hν121+αC

1− hν1e

)k−1

max
T3∈T3

νT3

≤ 3l1l2l322αC3(1 + C)l2+l3−2

(
h

1− hν1e

)l
hν1(1− hν1e)2

(1− hν1e− hν121+αC)3
max
T3∈T3

νT3
. (5.18)
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In view of (5.16), (5.17) and (5.18), Theorem 5.1 in the case m = 3 is proven by setting

A3,1 := l1l2l3lC
2(1 + C)l2+l3−2

(
h

1− hν1e

)l
, (5.19)

A3,2 := 2l1l2l3lC
2(1 + C)l2+l3−2

(
h

1− hν1e

)l
hν121+αC

1− hν1e− hν121+αC
, (5.20)

A3,3 := 3l1l2l322αC3(1 + C)l2+l3−2

(
h

1− hν1e

)l
hν1(1− hν1e)2

(1− hν1e− hν121+αC)3
. (5.21)

5.4 The case of general m.

As before, we integrate out intermediate points y, which connect to only two others (as well as trees of
points y connected to a single point of

⋃m
i=1 ηi). We are then left with trees where each y has order ≥ 3.

In terms of Proposition 5.1, we have,

Qm(η1; . . . ; ηm | n) = hl
n∑
k=0

(
n

k

)
k!N

(1)
n−k(l + k)(hν1)n−kQ̃m(η1; . . . ; ηm | k), n ∈ N0, (5.22)

with Q̃m(η1; . . . ; ηm | k) the contributions from trees with k vertices in γ, each of which has order ≥ 2.
Denote by σ the number of connected components in

⋃m
i=1 ηi. If σ = 1, i.e. all the ηi are connected

directly, then there is no such tree, and the contribution is only from k = 0

Q̃m,1(η1; . . . ; ηm | 0) =
∑

f̃∈S(η1;...;ηm|∅)

∏
(i,j)∈f̃

ν(xi − xj).

This can be bounded by Cl−l1N
(m)
0 (l1; . . . ; lm) × maxTm∈Tm νTm , but a better bound is obtained as in

the case m = 3, replacing the factor Li in N
(m)
0 (l1; . . . ; lm) by the sum in (5.10)

Q̃m,1(η1; . . . ; ηm | 0) ≤ lm−2(

m∏
i=1

li)C
m−1(1 + C)l−l1−m+1 max

Tm∈Tm
νTm .

By using the estimate (5.15), we obtain,

∞∑
n=0

1

n!
Qm,1(η1; . . . , ηm | n) ≤ Am,1 max

Tm∈Tm
νTm ,

Am,1 := lm−2(

m∏
i=1

li)C
m−1(1 + C)l−l1−m+1

(
h

1− hν1e

)l
, (5.23)

which agrees with (5.16) in case m = 3. If σ = 2, the only possible such tree is a chain connecting one
component to the other. In this case, we have k ≥ 1 and,

Q̃m,2(η1; . . . ; ηm | k)

=
∑

I1⊂{1,...,m}
1∈I1, |I1|<m

∑
x1∈ηI1

∑
i2∈I2
I2=Ic1

K(k)(x1; ηi2)

×
∑

f1∈S(η1;ηI1\{1}|∅)

∏
(x,x′)∈f1

ν(x− x′)
∑

f2∈S(ηi2 ;ηI2\{i2}|∅)

∏
(x,x′)∈f2

ν(x− x′)

≤ C(hν121+αC)k
∑

{I1,I2}∈Π2({1,...,m})
1∈I1

∑
i2∈I2

(1 + C)li2−1
∑

x1∈ηI1

∑
x2∈ηi2

max
x2∈ηi2

ν(x1 − x2)

×
∑

f1∈S(η1;ηI1\{1}|∅)

∏
(x,x′)∈f1

ν(x− x′)
∑

f2∈S(ηi2 ;ηI2\{i2}|∅)

∏
(x,x′)∈f2

ν(x− x′).
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Here, Π2({1, . . . ,m}) denotes the set of all partitions of {1, . . . ,m} into 2 non-empty subsets. The latter
sums over forests can be estimated, replacing again Li by the sum in (5.10), as

∑
fj∈S(ηij ;ηIj\{ij}|∅)

∏
(x,x′)∈fj

ν(x− x′) ≤ l|Ij |−2
Ij

(
∏
i∈Ij

li)C
|Ij |−1(1 + C)

∑
i∈Ij\{ij}

(li−1)

max
Tj∈T (Ij)

νTj . (5.24)

Together with the link (x1, x2), we obtain a tree on {1, . . . ,m} (below we denote lI :=
∑
i∈I li)

Q̃m,2(η1; . . . ; ηm | k) ≤ (

m∏
i=1

li)
∑

{I1,I2}∈Π2({1,...,m})
1∈I1

2∏
i=1

l
|Ii|−1
Ii

Cm−1(1 + C)l−l1−m+1(hν121+αC)k max
Tm∈Tm

νTm .

The sum over partitions can in fact be evaluated (see [9]) and yields,

∑
{I1,I2}∈Π2({1,...,m})

1∈I1

2∏
i=1

l
|Ii|−1
Ii

= (m− 1)lm−2, m ≥ 2.

It remains to sum over n and k. Hence,

∞∑
n=1

1

n!
Qm,2(η1; . . . ; ηm | n) ≤ Am,2 max

Tm∈Tm
νTm ,

Am,2 := (m− 1)(

m∏
i=1

li)l
m−2Cm−1(1 + C)l−l1−m+1

(
h

1− hν1e

)l
hν121+αC

1− hν1e− hν121+αC
. (5.25)

Here, we assumed that h(ν1e + ν121+αC) < 1. Note that this agrees with (5.17) in case m = 3.
For σ ≥ 3, there is at least one point y ∈ γ which is connected to more than two other vertices. The

tree on γ connecting the different components can again be reduced to a tree T where all vertices have
order ≥ 3 by integrating out the vertices y of order 2, yielding factors K(k). The number of such vertices
in γ is at most σ− 2, where σ is the number of connected components of

⋃m
i=1 ηi. The reduction formula

reads

Q̃m,σ(η1; . . . ; ηm | k) =

min{k,σ−2}∑
r=1

∑
T∈Tr

∑
{Ij}σj=1∈Πσ({1,...,m})

1∈I1

∑
π∈M(3)(T,σ,r)

Q̃{Ij}σj=1,T,π
(r), k ≥ 1, (5.26)

with

Q̃{Ij}σj=1,T,π
(r) :=

hr

k!

(
k

r

)
(k − r)!

∫
Rdr

dy1 · · · dyr
∑

(ky,y′ )(y,y′)∈T
ky,y′≥0,

∑
(y,y′)∈T

ky,y′≤k−r

∏
(y,y′)∈T

K(ky,y′ )(y, y′)

×
∑

k1,...,kσ≥0
σ∑
j=1

kj+
∑

(y,y′)∈T
ky,y′=k−r

∑
x1∈η1

K(k1)(x1, yπ(1))×
∑

f1∈S(η1;ηI1\{1}|∅)

∏
(x,x′)∈f1

ν(x− x′)

×
σ∏
j=2

∑
ij∈Ij

K(kj)(yπ(j); ηij )
∑

fj∈S(ηij ;ηIj\{ij}|∅)

∏
(x,x′)∈fj

ν(x− x′)

 .

In (5.26), Tr denotes the set of tree graphs on r points, Ij the set of i such that ηi belongs to the j-th
component, Πσ({1, . . . ,m}) the set of all partitions {Ij}σj=1 of {1, . . . ,m} into σ non-empty subsets and

M(3)(T, σ, r) the set of maps π : {1, . . . , σ} → {1, . . . , r} such that |{y ∈ T : (yi, y) ∈ T}|+ |π−1(i)| ≥ 3,
i = 1, . . . , r, i.e., each point yi has at least 3 lines attached in the resulting graph. π ∈ M(3)(T, σ, r)
determines the points of attachment of each component to the tree T . We point out that the factor
1/k! compensates for k! in (5.22), and the factors

(
k
r

)
and (k − r)! then count the number of ways of
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choosing which yi are associated with the vertices of T and the number of ways of distributing the
remaining yi over the vertices of order 2. If q is the number of vertices y ∈ γ of T connected to at least
3 other points of γ, then the tree T determines q − 1 lines between these vertices. In addition, there
are qe ≥ 3q − 2(q − 1) = q + 2 endpoints. Each intermediate point of the tree must be connected to at
least one components of

⋃m
i=1 ηi, whereas each endpoint must be connected to at least two. Let t be the

number of intermediate points. Then σ ≥ t+ 2qe and, as result, r = qe + q + t ≤ 2qe − 2 + t ≤ σ − 2. It
follows that (5.26) can be rewritten as

Q̃m,σ(η1; . . . ; ηm | k) =

min{k,σ−2}∑
r=1

∑
T∈Tr

∑
{Ij}σj=1∈Πσ({1,...,m})

1∈I1

∑
π∈M(3)(T,σ,r)

Q̃{Ij}σj=1,T,π
(r). (5.27)

The contribution of a given tree T ∈ Tr with r vertices and an assignment π is bounded above by

Q̃{Ij}σj=1,T,π
(r) ≤ hr

r!
Cσ+r−1(hν121+αC)k−r

∑
(ky,y′ )(y,y′)∈T

ky,y′≥0,
∑

(y,y′)∈T
ky,y′≤k−r

∑
k1,...,kσ≥0

σ∑
j=1

kj+
∑

(y,y′)∈T
ky,y′=k−r

×
∫
Rdr

dy1 · · · dyr
∏

(y,y′)∈T

ν(y − y′)
∑

x1∈ηI1

ν(x1 − yπ(1))
∑

f1∈S(η1;ηI1\{1}|∅)

∏
(x,x′)∈f1

ν(x− x′)

×
σ∏
j=2

∑
ij∈Ij

(1 + C)lij−1
∑
xj∈ηij

ν(xj − yπ(j))
∑

fj∈S(ηij ;ηIj\{ij}|∅)

∏
(x,x′)∈fj

ν(x− x′)

 .

Inserting the bound (5.24) which holds for all j ∈ {1, . . . , σ}, we have,

Q̃{Ij}σj=1,T,π
(r) ≤ hr

r!
Cσ+r−1(hν121+αC)k−r

∑
(ky,y′ )(y,y′)∈T

ky,y′≥0,
∑

(y,y′)∈T
ky,y′≤k−r

∑
k1,...,kσ≥0

σ∑
j=1

kj+
∑

(y,y′)∈T
ky,y′=k−r

×
∫
Rdr

dy1 · · · dyr
∏

(y,y′)∈T

ν(y − y′)

 ∑
x1∈ηI1

ν(x1 − yπ(1))l
|I1|−2
I1

C |I1|−1(1 + C)

∑
i∈I1\{1}

(li−1)

max
T1∈T (I1)

νT1


×

σ∏
j=2

 ∑
xj∈ηIj

ν(xj − yπ(j))l
|Ij |−2
Ij

C |Ij |−1(1 + C)

∑
i∈Ij

(li−1)

max
Tj∈T (Ij)

νTj

 . (5.28)

Subsequently, we need to bound the integrals∫
Rdr

∏
(y,y′)∈T

ν(y − y′)
σ∏
j=1

ν(xj − yπ(j)) dy1 · · · dyr,

where xj ∈ ηIj and (y, y′) is a line in T between yi and yj for some i, j = 1, . . . , r. Note that it is allowed
for yπ(j) to be equal to yπ(j′) with j 6= j′. However, the number of unequal yπ(j) must be at least twice
the number of endpoints of the graph T on γ. To estimate this integral, we integrate over the endpoints
of T except the endpoint π(1) connected to I1. Integrating over an endpoint y, Lemma 5.3 yields

∫
Rd

p∏
i=1

ν(xi − y)ν(y − y′) dy ≤ 2αpν1

 p∑
i=1

p∏
k=1
k 6=i

ν(xi − xk)ν(xi − y′) +

p∏
i=1

ν(xi − y′)

 .
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Therefore, setting p = |π−1(i)|, we have,∫
Rd
ν(yi − y′i)

∏
j∈π−1(i)

ν(xj − yi) dyi

≤ 2α|π
−1(i)|ν1

 ∑
j∈π−1(i)

∏
j′∈π−1(i)
j′ 6=j

ν(xj − xj′)ν(xj − y′i) +
∏

j∈π−1(i)

ν(xj − y′i)

 .

Inserting this into (5.28), the first term in brackets combines trees Tj on clusters connected to the same
endpoint yi, i.e. π(j) = i, into a single tree T ′i connected to y′i. The second term connects all xj with
π(j) = i to y′i. Note also that the factors C |Ij |−1 combine to give

∏σ
j=1 C

|Ij |−1 = Cm−σ and similarly,

σ∏
j=1

(1 + C)

∑
i∈Ij\{1}

(li−1)

= (1 + C)l−l1−m+1.

Thus, we obtain,

Q̃{Ij}σj=1,T,π
(r) ≤ hr

r!
(

σ∏
j=1

l
|Ij |−2
Ij

)Cm+r−1(1 + C)l−l1−m+1(hν121+αC)k−r

×
∣∣{(ki)σ+r−1

i=1 :

σ+r−1∑
i=1

ki = k − r}
∣∣Q{Ij}σj=1,T,π

(r), (5.29)

where it is understood that ki ≥ 0 for i = 1, . . . , σ + r − 1, and where

Q{Ij}σj=1,T,π
(r) :=

∫
Rdr

∏
(y,y′)∈T

ν(y − y′)

 σ∏
j=1

∑
xj∈ηIj

ν(xj − yπ(j)) max
Tj∈T (Ij)

νTj

 dy1 · · · dyr. (5.30)

Singling out the endpoints ∂T of T other than π(1) and denoting Λ(π, T ) := π−1(∂T \ {π(1)}), (5.30)
can be rewritten as

Q{Ij}σj=1,T,π
(r) =

∫
Rdr

dy1 · · · dyr
∏

(y,y′)∈((T\∂T )∪{π(1)})

ν(y − y′)
∑

x1∈ηI1

ν(x1 − yπ(1)) max
T1∈T (I1)

νT1

×
∏
j>1

π(j)∈(T\∂T )

 ∑
xj∈ηIj

ν(xj − yπ(j)) max
Tj∈T (Ij)

νTj


×

∑
{xj}j∈Λ(π,T )

xj∈ηIj

∏
j∈Λ(π,T )

ν(xj − yπ(j))ν(yπ(j) − y′π(j)) max
Tj∈T (Ij)

νTj .

Integrating out the endpoints yπ(j), we have,

Q{Ij}σj=1,T,π
(r) ≤

∫
Rd|T\∂T |

∏
i∈(T\∂T )

dyi
∏

(y,y′)∈((T\∂T )∪{π(1)})

ν(y − y′)
∑

x1∈ηI1

ν(x1 − yπ(1)) max
T1∈T (I1)

νT1

×
∏
j>1

π(j)∈(T\∂T )

 ∑
xj∈ηIj

ν(xj − yπ(j)) max
Tj∈T (Ij)

νTj

 ∏
i∈(∂T\{π(1)})

2α|π
−1(i)|ν1

∑
{xj}j∈π−1(i)

xj∈ηIj

×

 ∑
j∈π−1(i)

∏
j′∈π−1(i)
j′ 6=j

ν(xj − xj′)ν(xj − y′i) +
∏

j∈π−1(i)

ν(xj − y′i)

 max
Tj∈T (Ij)

νTj

 . (5.31)
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After this first integration, some of the neighbours y′i have become endpoints of a reduced tree T . We
integrate out these points next and proceed this way until T is reduced to a single point. We can write
the expression (5.31) in terms of the reduced tree as follows

Q{Ij}σj=1,T,π
(r) ≤ 2α|π

−1(∂T\{π(1)})|ν
|∂T\{π(1)}|
1

∑
{I′j}

σ′
j=1∈Πσ′ ({1,...,m})

1∈I′1

∑
π′

Q{I′j}σ
′
j=1,T\∂T,π′

(r), (5.32)

where for each i′ ∈ ((T \ ∂T ) ∪ {π(1)}), the set of j′ such that π′(j′) = i′ is given by

(π′)−1(i′) = π−1(i′) ∪
⋃
i∈∂T
y′i=yi′

Si,

where, either Si := {j} for some j ∈ π−1(i), or Si := π−1(i). These two cases respectively correspond
to the two terms in the last factor of the right-hand side of (5.31). In the first case, the trees Tj with
π(j) = i combine into a single tree

T ′j :=
⋃

j′∈π−1(i)

Tj′ ∪ {(xj , xj′) : j′ ∈ π−1(i), j′ 6= j}.

In the second case, the forests fj are unchanged. The number of components is reduced to

σ′ = σ −
∑
i∈∂T
|Si|=1

(|π−1(i)| − 1).

The corresponding subdivision is I ′j =
⋃
j′∈π−1(i) Ij′ in the first case, and I ′j = Ij for all j ∈ π−1(i) in

the second case. In any case, we obviously have I ′j = Ij for j ∈ π−1(i′). We stress the point that the

definition of Q in the right-hand side of (5.32) has been slightly modified: we replaced νTj by the quantity

ν̃T ′j :=
∏

j′∈π−1(i)
j′ 6=j

lIj′ νT ′j if Si = {j}.

After at most r − 1 stages, the forest graph reduces to a single point r = 1. At the final stage, we need
to integrate over the last vertex y = yπ(1). Noticing that I ′1 = I1, it follows,

Q{I′j}σ
′
j=1,{y},1

(r) =

∫
Rd

∑
x1∈I′1

ν(x1 − y) max
T1∈T (I1)

νT1

∑
{xj}σ

′
j=2

xj∈ηI′
j

σ′∏
j=2

ν(xj − y) max
T ′j∈T (I′j)

ν̃T ′j

≤ 2α(σ′−1)ν1

∑
{xj}σ

′
j=1

xj∈ηI′
j

σ′∑
j=1

 σ′∏
j′=1
j′ 6=j

ν(xj − xj′) max
T∈T ({1,...,m}\{j})

ν̃T

 ≤ 2α(σ′−1)ν1(

σ∏
j=1

lIj ) max
Tm∈Tm

νTm .

Since all trees generated are distinct, we can write, bounding σ′ by σ at each stage,

Q{Ij}σj=1,T,π
(r) ≤ 2α(σr−1)νr1(

σ∏
j=1

lIj ) max
Tm∈Tm

νTm .

Inserting this in (5.29) and (5.27), we obtain the upper bound

Q̃m,σ(η1; . . . ; ηm | k) ≤
∑

{Ij}σj=1∈Πσ({1,...,m})
1∈I1

(

σ∏
j=1

l
|Ij |−1
Ij

)Cm−1(1 + C)l−l1−m+1(hν1C)k

×
min{k,σ−2}∑

r=1

∑
T∈Tr

∑
π∈M(3)(T,σ,r)

1

r!
2α(rσ−1)2(1+α)(k−r)∣∣{(ki)σ+r−1

i=1 :

σ+r−1∑
i=1

ki = k − r}
∣∣ max
Tm∈Tm

νTm ,
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where it is understood that ki ≥ 0 for i = 1, . . . , σ + r − 1. We now bound the number of trees T ∈ Tr
by rr−2 ≤ r!er, and the number of maps π by rσ ≤ (σ− 2)σ. Using the combinatoric identity (see [9] for
a proof), ∑

{Ij}σj=1∈Πσ({1,...,m})
1∈I1

(

σ∏
j=1

l
|Ij |−1
Ij

) =

(
m− 1

σ − 1

)
lm−σ, 2 ≤ σ ≤ m, (5.33)

where, as previously, Πσ({1, . . . ,m}) denotes the set of all partitions {Ij}σj=1 of {1, . . . ,m} into σ non-
empty subsets, we get

Q̃m,σ(η1; . . . ; ηm | k) ≤ (σ − 2)σ
(
m− 1

σ − 1

)
lm−σCm−1(1 + C)l−l1−m+1(hν1C)k

×
min{k,σ−2}∑

r=1

er2α(rσ−1)2(1+α)(k−r)∣∣{(ki)σ+r−1
i=1 :

σ+r−1∑
i=1

ki = k − r}
∣∣ max
Tm∈Tm

νTm .

Summing over k and n, we have, setting n′ := n− k and k′ := k − r,

∞∑
n=1

1

n!
Qm,σ(η1; . . . ; ηm | n)

≤(σ − 2)σ
(
m− 1

σ − 1

)
lm−σCm−1(1 + C)l−l1−σ+1hl

∞∑
k=1

(hν1C)k
∞∑
n′=0

(hν1)n
′

n′!
N

(1)
n′ (k + l)

×
min{k,σ−2}∑

r=1

2(1+α)(k−r)2α(rσ−1)er
∣∣{(ki)σ+r−1

i=1 :

σ+r−1∑
i=1

ki = k − r}
∣∣ max
Tm∈Tm

νTm

≤(σ − 2)σ
(
m− 1

σ − 1

)
lm−σCm−1(1 + C)l−l1−σ+1

σ−2∑
r=1

(hν1C)r
(

h

1− hν1e

)l+r

× 2α(rσ−1)er
∞∑
k′=0

(
hν121+αC

1− hν1e

)k′
max
Tm∈Tm

νTm

≤(σ − 2)σ
(
m− 1

σ − 1

)
2α(σ−1)2

lm−σCm−1(1 + C)l−l1−σ+1

(
h

1− hν1e

)l(
1− hν1e

1− hν1e− hν121+αC

)σ−1

×
∞∑
r=1

(
hν1Ce

1− hν1e− hν121+αC

)r
max
Tm∈Tm

νTm .

Here, we assumed that h[ν1e + ν1C(e + 21+α)] < 1. Theorem 5.1 in the case m ≥ 4 is proven by setting,
for any 3 ≤ σ ≤ m,

Am,σ := (σ − 2)σ
(
m− 1

σ − 1

)
2α(σ−1)2

lm−σCm(1 + C)l−l1−σ+1

(
h

1− hν1e

)l
×
(

1− hν1e

1− hν1e− hν121+αC

)σ
hν1e(1− hν1e− hν121+αC)

1− hν1e− hν1(e + 21+α)C
. (5.34)
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