19 research outputs found

    Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    Get PDF
    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes

    The effect of iron re-deposition on the corrosion of impurity-containing magnesium

    Get PDF
    This article provides a contribution towards the mechanistic understanding of surface phenomena observed during the corrosion of Mg-based substrates particularly in the low anodic polarization range. The concept considers the recent literature explaining cathodic hydrogen evolution from noble acting areas even during global anodic polarization. Heavy metal impurities in the ppm range or intermetallics are always present even in highly pure magnesium. Their potential effect was investigated here in more detail. The experimental results contribute to understanding the role of iron impurities in dark area formation and suggest a way for linking the observed phenomena to the recent literature. The shown enhanced cathodic activity of dark areas especially at the corrosion front and the superfluous hydrogen are linked to an iron re-deposition mechanism due to iron reduction. The proposed mechanism is based on the results obtained from innovative characterisation techniques using magnetic fields, diffraction experiments and transmission electron microscopy, which show the formation of iron rich zones, especially at the corrosion front offering "in statu nascendi" metallic Fe films acting as active cathodes for hydrogen reduction

    Corrosion Protection Effect of Chitosan on the Performance Characteristics of A6063 Alloy

    Get PDF
    This article outlines the behaviour of water-soluble chitosan as an effective inhibitor on aluminium alloy in 3.65% NaCl at room temperature. The inhibitive ability of water-soluble chitosan was examined using electrochemical potentiodynamic polarization techniques, mass loss measurements and computational studies. The outcome of the experiment reveals that chitosan inhibited aluminium alloy in sodium chloride solution exhibits better corrosion protection than the uninhibited because chitosan nanoparticles minimize the ingression of chloride ion into the active sites of aluminium alloy by forming thin film on its surface. The losses in mass by the inhibited aluminium alloy were found to reduce as the concentration of chitosan increases. Results obtained showed that chitosan could offer inhibition efficiency above 70%. Polarization curve demonstrated that chitosan in 3.65% NaCl at room temperature acted as a mixed-type inhibitor. Adsorption of chitosan nanoparticles on the aluminium alloy was found to follow Langmuir adsorption isotherm with correlation regression coefficient (R2 ) value of 0.9961

    Electrochemical dissolution characteristics of Zn, Mg, Al and ZnMg(Al) alloys

    No full text

    Investigating the real time dissolution of Mg using online analysis by ICP-MS

    No full text
    Dissolution of magnesium was studied using an electrochemical flow cell combined with online analytics. The method has high sensitivity and congruency between electrochemical polarization experiments and magnesium concentrations detected downstream via inductively coupled plasma - mass spectroscopy (ICP-MS). The method used allowed quantification of magnesium dissolution during anodic and cathodic polarization and also without external currents, i.e. determination of dissolution rate at open circuit, which is not accessible by electrochemical techniques. The relationship between the applied current, and dissolved magnesium measured is presented and discussed in the broader context of past and recent works studying magnesium corrosion. The development of a surface film during anodic dissolution is described on the basis of an inventory of currents measured and applied. (C) 2014 The Electrochemical Society. All rights reserved

    Multi-element-resolved electrochemical corrosion analysis. Part I. Dissolution behavior and passivity of amorphous Fe<sub>50</sub> Cr<sub>15</sub> Mo<sub>14</sub> C<sub>15</sub> B<sub>6</sub>

    Get PDF
    AbstractMulti-element dissolution analysis of amorphous Fe50Cr15Mo14C15B6 in 0.1M H2SO4 was investigated electrochemically and by coupled online mass spectrometry. We fully discuss the most important aspects of the application of the newly-developed methodology to study complex multi-elemental alloys. The resulting partial dissolution rates of Fe, Cr and Mo reflect the passive behavior and are compared to the measured total current density as function of time. The deviations between the added elemental dissolution currents and the measured total current density are discussed. Furthermore, the inferred growth of oxide thickness was correlated to results obtained from surface analysis
    corecore