30 research outputs found
Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise
Phase retrieval is a technique for extracting quantitative phase information from X-ray propagation-based phase-contrast tomography (PPCT). In this paper, the performance of different single distance phase retrieval algorithms will be investigated. The algorithms are herein called phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-WA), respectively. They are all based on phase-attenuation duality property and on weak absorption of the sample and they employ only a single distance PPCT data. In this paper, they are investigated via simulated noise-free PPCT data considering the fulfillment of PAD property and weakly absorbing conditions, and with experimental PPCT data of a mixture sample containing absorbing and weakly absorbing materials, and of a polymer sample considering different degrees of statistical and structural noise. The simulation shows all algorithms can quantitatively reconstruct the 3D refractive index of a quasi-homogeneous weakly absorbing object from noise-free PPCT data. When the weakly absorbing condition is violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA that are shown in both simulation and mixture sample results. When considering the statistical noise, the contrast-to-noise ratio values decreases as the photon number is reduced. The structural noise study shows that the result is progressively corrupted by ring-like artifacts with the increase of structural noise (i.e. phantom thickness). The PAD-RA and PAD-PA/WA gain better density resolution than the PAD-BA and PAD-MBA in both statistical and structural noise study
Phase retrieval in quantitative x-ray microtomography with a single sample-to-detector distance
Phase retrieval extracts quantitative phase information from x-ray propagation-based phase-contrast images. Notwithstanding inherent approximations, phase retrieval using a single sample-to-detector distance (SDD) is very attractive, because it imposes no setup complications or additional radiation dose compared to absorption-based imaging. Considering the phase-attenuation duality (ε =δ/β, where ε is constant), a simple absorption correction factor is proposed for the modified Bronnikov algorithm in x-ray propagation-based phase-contrast computed tomography (PPCT). Moreover, a practical method for calculating the optimal ε value is proposed, which requires no prior knowledge of the sample. Tests performed on simulation and experimental data successfully distinguished different materials in a quasihomogeneous and weakly absorbing sample from a single SDD-PPCT data point
The AGILE Mission
AGILE is an Italian Space Agency mission dedicated to observing the gamma-ray Universe. The AGILE's very innovative instrumentation for the first time combines a gamma-ray imager (sensitive in the energy range 30 MeV-50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV), a calorimeter (sensitive in the range 350 keV-100 MeV), and an anticoincidence system. AGILE was successfully launched on 2007 April 23 from the Indian base of Sriharikota and was inserted in an equatorial orbit with very low particle background. Aims. AGILE provides crucial data for the study of active galactic nuclei, gamma-ray bursts, pulsars, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. Methods. An optimal sky angular positioning (reaching 0.1 degrees in gamma- rays and 1-2 arcmin in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compact instrument. Results. AGILE surveyed the gamma- ray sky and detected many Galactic and extragalactic sources during the first months of observations. Particular emphasis is given to multifrequency observation programs of extragalactic and galactic objects. Conclusions. AGILE is a successful high-energy gamma-ray mission that reached its nominal scientific performance. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program
Updated guidance on the management of COVID-19:from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020)
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome-coronavirus-2. Consensus suggestions can standardise care, thereby improving outcomes and facilitating future research. METHODS: An International Task Force was composed and agreement regarding courses of action was measured using the Convergence of Opinion on Recommendations and Evidence (CORE) process. 70% agreement was necessary to make a consensus suggestion. RESULTS: The Task Force made consensus suggestions to treat patients with acute COVID-19 pneumonia with remdesivir and dexamethasone but suggested against hydroxychloroquine except in the context of a clinical trial; these are revisions of prior suggestions resulting from the interim publication of several randomised trials. It also suggested that COVID-19 patients with a venous thromboembolic event be treated with therapeutic anticoagulant therapy for 3 months. The Task Force was unable to reach sufficient agreement to yield consensus suggestions for the post-hospital care of COVID-19 survivors. The Task Force fell one vote shy of suggesting routine screening for depression, anxiety and post-traumatic stress disorder. CONCLUSIONS: The Task Force addressed questions related to pharmacotherapy in patients with COVID-19 and the post-hospital care of survivors, yielding several consensus suggestions. Management options for which there is insufficient agreement to formulate a suggestion represent research priorities.status: Published onlin