48 research outputs found

    QUANTIFICATION AND REPRESENTATION OF POTENTIAL SPATIAL INTERACTIONS IN THE SOUTHERN BENGUELA ECOSYSTEM

    Get PDF
    This work explores the potential spatial interactions between 13 key commercial species of the southern Benguela ecosystem: sardine Sardinops sagax, anchovy Engraulis encrasicolus, round herring Etrumeus whiteheadi, horse mackerel Trachurus trachurus capensis, chub mackerel Scomber japonicus, chokka squid Loligo vulgaris reynaudii, kingklip Genypterus capensis, Cape hake Merluccius spp., silver kob Argyrosomus inodorus, snoek Thyrsites atun, albacore Thunnus alalunga, bigeye tuna Thunnus obesus and yellowfin tuna Thunnus albacares. It is based on distribution maps per species after combining available commercial and research databases. The resulting 78 pairs of potential interactions are quantified using three indices: the overlap in area, the overlap in biomass and the weighted kappa index. From additional information on the diet of the different species and trophic models, the main trophic interactions (predation or competition) were identified and mapped. The results are discussed with regard to methodological limitations, habitat selection, fish assemblages, the need for spatial resolution of trophic models and the ecosystem approach to fishery management.Afr. J. mar. Sci. 26: 141–15

    DISTRIBUTION PATTERNS OF KEY FISH SPECIES OF THE SOUTHERN BENGUELA ECOSYSTEM: AN APPROACH COMBINING FISHERY-DEPENDENT AND FISHERY-INDEPENDENT DATA

    Get PDF
    Within the context of an ecosystem approach for fisheries, there is a need for quantitative information on distributions of key marine species. This information is valuable input for modelling species interactions in the southern Benguela ecosystem. In the present study, a method is described for mapping the density distribution of 15 key species: anchovy Engraulis encrasicolus, sardine Sardinops sagax, round herring Etrumeus whiteheadi, chub mackerel Scomber japonicus, horse mackerel Trachurus trachurus capensis, lanternfish Lampanyctodes hectoris, lightfish Maurolicus muelleri, albacore Thunnus alalunga, bigeye tuna Thunnus obesus, yellowfin tuna Thunnus albacares, silver kob Argyrosomus inodorus, snoek Thyrsites atun, Cape hake Merluccius spp., kingklip Genypterus capensis and chokka squid Loligo vulgaris reynaudi. The purpose was to make use of all available sources of data to extend the spatial and temporal coverage of the southern Benguela. Six sources of data were combined on a 10´ × 10´ cell grid in a Geographical Information System: acoustic and demersal surveys conducted by Marine and Coastal Management (MCM), and pelagic, demersal (including midwater trawl), hake-directed and tuna-directed longline commercial landings data collected by MCM. Comparisons of distributions between two periods (1980s and 1990s) and between two semesters (April –September and October–March) were conducted, but biases as a result of major differences in sampling strategy prevented detailed analysis for certain species. Maps of density distributions are nevertheless presented here and the method to determine them is discussed.Afr. J. mar. Sci. 26: 115–13

    Shedding Light on Fish Otolith Biomineralization Using a Bioenergetic Approach

    Get PDF
    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    Get PDF
    Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD(h), δ(18)O(h)) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD(h) and δ(18)O(h) requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.We used coupled δD(h) and δ(18)O(h) measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ(18)O(h) and δD(h). Conversely, strong δD and δ(18)O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate).Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ(18)O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ(18)O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa

    Food habits of the farmer damselfish Stegastes nigricans inferred by stomach content, stable isotope, and fatty acid composition analyses

    Get PDF
    The territorial damselfish, Stegastes nigricans, maintains algal farms by excluding invading herbivores and weeding unpalatable algae from its territories. In Okinawa, Japan, S. nigricans farms are exclusively dominated by Polysiphonia sp., a highly digestible filamentous rhodophyte. This study was aimed at determining the diet of S. nigricans in Okinawa and its dependency on these almost-monoculture algal farms based on stomach content and chemical analyses. Stomach content analyses revealed that all available food items in the algal farms (i. e., algae, benthic animal inhabitants, trapped detritus) were contained in fish stomachs, but amorphous organic matter accounted for 68% of the contents. Therefore, carbon and nitrogen stable isotope ratios and fatty acid (FA) compositions were analyzed to trace items actually assimilated in their bodies. Stable isotope analyses showed that benthic animals were an important food source even for this farmer fish. Two essential fatty acids (EFAs), 20:4n6 and 20:5n3, which are produced only by rhodophytes among available food items, were rich in the muscle tissue of S. nigricans as well as in algal mats and detritus, suggesting that algal mats contribute EFAs to S. nigricans directly and indirectly through the food web. In conclusion, S. nigricans ingested algal mats, detritus, and benthic animals maintained within its farm. Algae and detritus were original sources of EFAs, and benthic animals, which were much more abundant in the farms than in outside territories, provided a nitrogen-rich dietary source for the fish

    Modelling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration.

    No full text
    Spawning location and timing are critical for understanding fish larval survival. The impact of a changing environment on spawning patterns is, however, poorly understood. A novel approach is to consider the impact of the environment on individual life histories and subsequent spawnings. In the present work, we extend the Dynamic Energy Budget (DEB) theory to investigate how environment variability impacts the spawning timing and duration of a multiple-batch spawning species. The model is successfully applied to reproduce the growth and reproduction of anchovy (Engraulis encrasicolus) in the Bay of Biscay. The model captures realistically the start and ending of the spawning season, including the timing of the spawning events, and the change in egg number per batch. Using a realistic seasonal forcing of temperature and food availability derived from a bio-physical model, our simulation results show that two thirds of the total spawned mass already accumulates before the start of the spawning season and that the condition factor increases with body length. These simulation results are in accordance with previous estimations and observations on growth and reproduction of anchovy. Furthermore, we show how individuals of equal length can differ in reproductive performance according to the environmental conditions they encounter prior to the spawning season. Hatch date turns out to be key for fecundity at age-1 as it partly controls the ability to build up reserves allocated to reproduction. We suggest the model can be used to realistically predict spawning in spatially and temporally varying environments and provide initial conditions for bio-physical models used to predict larval survival

    Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory.

    No full text
    To determine the response of Pacific salmon (Oncorhynchus spp.) populations to environmental change, we need to understand impacts on all life stages. However, an integrative and mechanistic approach is particularly challenging for Pacific salmon as they use multiple habitats (river, estuarine and marine) during their life cycle. Here we develop a bioenergetic model that predicts development, growth and reproduction of a Pacific salmon in a dynamic environment, from an egg to a reproducing female, and that links female state to egg traits. This model uses Dynamic Energy Budget (DEB) theory to predict how life history traits vary among five species of Pacific salmon: Pink, Sockeye, Coho, Chum and Chinook. Supplemented with a limited number of assumptions on anadromy and semelparity and external signals for migrations, the model reproduces the qualitative patterns in egg size, fry size and fecundity both at the inter- and intra-species levels. Our results highlight how modeling all life stages within a single framework enables us to better understand complex life-history patterns. Additionally we show that body size scaling relationships implied by DEB theory provide a simple way to transfer model parameters among Pacific salmon species, thus providing a generic approach to study the impact of environmental conditions on the life cycle of Pacific salmon. © 2011 Elsevier B.V

    Scenarios for acceleration in fish development and the role of metamorphosid.

    No full text
    We compare various alternative explanations of why embryo development is sometimes slow relative to juvenile and adult development on the basis of the standard Dynamic Energy Budget (DEB) model and make the comparison with avian altricial versus precocial development. We discuss the role of the energy investment ratio, which combines four different aspects of DEBs: allocation, assimilation, mobilisation and costs for structure. We show how this ratio affects the morphology of growth curves: the ratio of the slopes at start and birth during embryonic growth, as well as the von Bertalanffy time as function of ultimate length during post-embryonic growth. We propose an extension of the standard DEB model that combines a Gompertz (i.e. exponential) start with a von Bertalanffy 'tail' with a smooth transition; a combination that has been applied frequently in fisheries research and here given a mechanistic significance. Implications are that a slow embryonic development is combined with a fast post-metamorphic one and that parameters at metamorphosis depend on feeding history prior to metamorphosis. Identical individuals, in terms of parameter values and amounts of reserve and structure, will become permanently different when they experience different (local) environments, even if they experience identical environments after metamorphosis. This might explain part of the parameter variation amongst individuals. © 2011 Elsevier B.V
    corecore