593 research outputs found

    Age at first intercourse and subsequent sexual partnering among adult women in the United States, a cross-sectional study

    Get PDF
    BACKGROUND: Concurrency and serial monogamy may increase risk for STIs when gaps fall within the infectious period. This study examined the association between early sexual debut and concurrent or serial sexual partnering among heterosexual adult women. METHODS: We identified 6,791 heterosexually active women, ages 21-44, from the 2006-2010 National Survey of Family Growth, a multi-stage probability sample of women in the United States. Self-reported age at first intercourse was categorized as \u3c 15, 15-17 and \u3e /=18 years (referent). Sexual partnering was defined as concurrency (within the same month), serial monogamy with either a 1-3 month, or \u3e /=4 month gap between partners, or monogamy (referent) in the year prior to interview. Polytomous logistic models provided adjusted odds ratios (aOR) and 95% confidence intervals (CI). RESULTS: Concurrent partnerships in the year prior to interview were reported by 5.2% of women. Serial monogamy with a 1-3 month gap was reported by 2.5% of women. Compared with women whose sexual debut was \u3e /=18 years, those \u3c 15 years at sexual initiation had 3.7 times the odds of reporting concurrent partnerships (aOR: 3.72; 95% CI: 2.46-5.62). Women \u3c 15 years of age at sexual debut had twice the odds of serial monogamy with gap lengths of 1-3 months between partners (aOR1-3 months: 2.13; 95% CI 1.15-3.94) as compared to women \u3e /=18 years at sexual debut. CONCLUSIONS: Sexual debut at \u3c 15 years is associated with both concurrency and serial monogamy with 1-3 month gaps between partners in U.S. women aged 21-44

    Anomalous Scaling and Solitary Waves in Systems with Non-Linear Diffusion

    Full text link
    We study a non-linear convective-diffusive equation, local in space and time, which has its background in the dynamics of the thickness of a wetting film. The presence of a non-linear diffusion predicts the existence of fronts as well as shock fronts. Despite the absence of memory effects, solutions in the case of pure non-linear diffusion exhibit an anomalous sub-diffusive scaling. Due to a balance between non-linear diffusion and convection we, in particular, show that solitary waves appear. For large times they merge into a single solitary wave exhibiting a topological stability. Even though our results concern a specific equation, numerical simulations supports the view that anomalous diffusion and the solitary waves disclosed will be general features in such non-linear convective-diffusive dynamics.Comment: Corrected typos, added 3 references and 2 figure

    Fluid Flows of Mixed Regimes in Porous Media

    Full text link
    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.Comment: 33 page

    Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2

    Get PDF
    Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 with precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain

    Effect of a finite external heat transfer coefficient on the Darcy-Benard instability in a vertical porous cylinder

    Get PDF
    The onset of thermal convection in a vertical porous cylinder is studied by considering the heating from below and the cooling from above as caused by external forced convection processes. These processes are parametrised through a finite Biot number, and hence through third-kind, or Robin, temperature conditions imposed on the lower and upper boundaries of the cylinder. Both the horizontal plane boundaries and the cylindrical sidewall are assumed to be impermeable; the sidewall is modelled as a thermally insulated boundary. The linear stability analysis is carried out by studying separable normal modes, and the principle of exchange of stabilities is proved. It is shown that the Biot number does not affect the ordering of the instability modes that, when the radius-to-height aspect ratio increases, are displayed in sequence at the onset of convection. On the other hand, the Biot number plays a central role in determining the transition aspect ratios from one mode to its follower. In the limit of a vanishingly small Biot number, just the first (non-axisymmetric) mode is displayed at the onset of convection, for every value of the aspect ratio. (C) 2013 American Institute of Physic

    Incompressible flow in porous media with fractional diffusion

    Get PDF
    In this paper we study the heat transfer with a general fractional diffusion term of an incompressible fluid in a porous medium governed by Darcy's law. We show formation of singularities with infinite energy and for finite energy we obtain existence and uniqueness results of strong solutions for the sub-critical and critical cases. We prove global existence of weak solutions for different cases. Moreover, we obtain the decay of the solution in LpL^p, for any p2p\geq2, and the asymptotic behavior is shown. Finally, we prove the existence of an attractor in a weak sense and, for the sub-critical dissipative case with α(1,2]\alpha\in (1,2], we obtain the existence of the global attractor for the solutions in the space HsH^s for any s>(N/2)+1αs > (N/2)+1-\alpha

    Surface and subsurface characterisation of salt pans expressing polygonal patterns

    Get PDF
    The data set described here contains information about the surface, subsurface and environmental conditions of salt pans that express polygonal patterns in their surface salt crust (Lasser et al., 2020b), DOI: 10.5880/fidgeo.2020.037. Information stems from 5 field sites at Badwater Basin and 21 field sites at Owens Lake – both in central California. All data was recorded during two field campaigns, from between November and December, 2016, and in January 2018. Crust surfaces, including the mean diameter and fluctuations in the height of the polygonal patterns, were characterised by terrestrial laser scanner. The data contains the resulting three dimensional point clouds, which describe these surfaces. The subsurface is characterised by grain size distributions of samples taken from depths between 5 cm and 100 cm below the salt crust, and measured with a laser particle size analyser. Subsurface salinity profiles were recorded and the ground water density was also measured. Additionally, the salts present in the crust and pore water were analysed to determine their compo- sition. To characterise the environmental conditions at Owens Lake, including the differences between nearby crust features, records were made of the temperature and relative humidity during one week in November 2016. The field sites are characterised by images, showing the general context of each site, such as pictures of selected salt polygons, including any which were sampled, a typical core from each site at which core samples were taken and close-ups of the salt crust morphology. Finally, two videos of salt crust growth over the course of spring 2018 and reconstructed from time-lapse images are included

    On the boundary layer structure near a highly permeable porous interface

    Get PDF
    The method of matched asymptotic expansions is used to study the canonical problem of steady laminar flow through a narrow two-dimensional channel blocked by a tight-fitting finite-length highly permeable porous obstacle. We investigate the behaviour of the local flow close to the interface between the single-phase and porous regions (governed by the incompressible Navier--Stokes and Darcy flow equations, respectively). We solve for the flow in these inner regions in the limits of low and high Reynolds number, facilitating an understanding of the nature of the transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant analytical progress is made in the high-Reynolds-number limit, and we explore in detail the rich boundary layer structure that occurs. We derive general results for the interfacial stress and for the conditions that couple the flow in the outer regions away from the interface. We consider the three-dimensional generalization to unsteady laminar flow through and around a tight-fitting highly permeable cylindrical porous obstacle within a Hele-Shaw cell. For the high-Reynolds-number limit, we give the coupling conditions and interfacial stress in terms of the outer flow variables, allowing information from a nonlinear three-dimensional problem to be obtained by solving a linear two-dimensional problem. Finally, we illustrate the utility of our analysis by considering the specific example of time-dependent forced far-field flow in a Hele-Shaw cell containing a porous cylinder with a circular cross-section. We determine the internal stress within the porous obstacle, which is key for tissue engineering applications, and the interfacial stress on the boundary of the porous obstacle, which has applications to biofilm erosion. In the high-Reynolds-number limit, we demonstrate that the fluid inertia can result in the cylinder experiencing a time-independent net force, even when the far-field forcing is periodic with zero mean

    Therapeutic Improvement of Scarring: Mechanisms of Scarless and Scar-Forming Healing and Approaches to the Discovery of New Treatments

    Get PDF
    Scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in loss of function, restriction of tissue movement and adverse psychological effects. Whilst various studies have utilised a range of model systems that have increased our understanding of the pathways and processes underlying scar formation, they have typically not translated to the development of effective therapeutic approaches for scar management. Existing treatments are unreliable and unpredictable and there are no prescription drugs for the prevention or treatment of dermal scarring. As a consequence, scar improvement still remains an area of clear medical need. Here we describe the basic science of scar-free and scar-forming healing, the utility of pre-clinical model systems, their translation to humans, and our pioneering approach to the discovery and development of therapeutic approaches for the prophylactic improvement of scarring in ma
    corecore