
A Theoretical Study, With 
Experimental Verification, of the 
Temperature-Dependent Viscosity 
Effect on the Forced Convection 
Through a Porous Medium Channel 

D. A. Nield,1 D. C. Porneala,2 and J. L. Lage3 

Introduction 

The problem of forced convective flow in a channel is a topic of 
fundamental importance, and one which features prominently in 
textbooks on convective heat transfer such as Bejan (1984/1995) 
and in articles in handbooks such as those by Kays and Harnett 
(1973) or Shah and Bhatti (1987). However, it appears that there is 
little accessible information available on the practically important 
but complex case where the effect of the dependence of the 
viscosity on temperature is included. In this case, the velocity 
profile depends on the temperature field and the latter also depends 
on the former, so in general a system of coupled differential 
equations must be solved. 

Considering specifically the case of flow through a porous 
medium, an analytical treatment of convection by a temperature-
dependent fluid was presented recently by Ling and Dybbs (1992). 
However, their model is restricted to convection through a porous 
medium adjacent to an isothermal flat plate. 

Our purpose is to present a theory, based on a perturbation 
approach, which permits the determination of the effect of viscos
ity variation (with temperature) on the pressure drop of a convec-
tively cooled, porous medium channel. The need for such a theory 
is not only fundamental but also practical. New designs of micro-
porous enhanced cold plates for cooling airborne microelectronics 
rely on brazed metallic porous inserts for improved thermal effi
ciency (Lage et al., 1996; Antohe et al., 1996; Antohe et al, 1997). 
These devices are to be cooled with PolyAlphaOlefin (PAO), a 
very common synthetic oil used for cooling military avionics. This 
oil has viscosity strongly dependent on temperature, 

lx(T) =0 .1628 r- ' 0 8 6 8 , 5 ° C < r < 1 7 0 ° C , (1) 

where T is the temperature in °C, and /x is the dynamic viscosity 
in kg/ms (Chevron, 1981). The prediction of the thermohydraulic 
behavior of these devices, particularly the pressure drop increase 
imposed by the porous insert, is critical for design optimization. 

Our theoretical analysis provides a detailed explanation of the 
way in which the temperature effect comes into play. The validity 
of the model prediction is checked against experimental data 
obtained from tests of PAO flowing through a typical microporous 
cold plate. Obviously, our theory is not limited to PAO, but to any 
coolant presenting temperature-dependent viscosity (with other 
properties being much less affected by temperature). PAO was 
chosen as our test fluid because it presents immediate application 
interest to the avionics industry. 
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Theoretical Model and Discussion 

We consider the flow of an incompressible fluid in a channel 
between plane parallel plates at y = ±H (i.e., H is the half-
spacing of the channel, y being a Cartesian coordinate transverse 
to the plates). The thermal boundary conditions are symmetrical 
ones of uniform heat flux. The Peclet number is assumed to be 
sufficiently high for the axial thermal conduction to be neglected. 
Fluid properties other than the viscosity jut are assumed to be 
constant (a good approximation for most fluids, including PAO). 
The energy equation in this case is 

u dT d2T 

aJx^Jy* ( 2 ) 

where a is the thermal diffusivity, x is the longitudinal coordinate, 
and u is the longitudinal fluid speed. Equation (2) is valid when the 
fluid velocity is uniform in y (slug flow), which is appropriate to 
a porous medium when the Darcy's Law is valid, i.e., when 

K 
u = -G (3) 

M 

where K is the permeability of the medium and G is the applied 
pressure gradient. Even though the slug flow model is also appro
priate for the hydrodynamically undeveloped flow of a low Prandtl 
number fluid, in the following analysis just the porous medium 
situation is considered, in line with our practical application. 

For the present case (uniform wall heat flux) the variables x and 
y of Eq. (2) can be separated in an additive fashion (compare Eqs. 
(3.56) and (3.59) of Bejan (1984/1995)) and the First Law of 
Thermodynamics leads to 

dT _dTm _ aq" 

dx dx kHum 

where um is the bulk (mean) longitudinal speed, q" is the boundary 
heat flux, k is the thermal conductivity, and Tm is the bulk tem
perature defined generally as 

1 [» 
Tm = ^Ji\ uTdy- (5 ) 

J o 

From Eq. (4) it follows that the order of magnitude of the ratio of 
ST/dx and 8T/8y is equal to the reciprocal of the P6clet number, 
and so this ratio is small under an assumption already made. 
Hence, variations of the viscosity with x are neglected in this 
analysis. It follows that one can also assume that the speed u is 
independent of x. 

Using Eq. (4), Eq. (2) gives 

d2T _ q"u 

Up = kHum • ( 6 ) 

The boundary conditions can be rewritten using the wall temper
ature T„, as 

BT/dy = 0 at y = 0, T= Tw(x) aiy = H. (7) 

A linear approximation (based on a truncated Taylor series 
expansion) for the variation with temperature of the reciprocal of 
the viscosity is made: 

- = — J l ( - T F ) (T-T0)\ (8) 
ix Mo [ Mo \dT)o

 U/J 

where the suffix 0 indicates evaluation at the reference temperature 
T0. A "viscosity variation number," N, is now defined as 

q"H 1 fda\ 
N = ~ - £ (9) 

k Mo \ dT) Q 
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The following perturbation analysis is made on the assumption that 
JV is a small parameter. A process involving successive approxi
mations is carried out. (A more formal procedure, which leads to 
the same results, is to expand the dependent variables and the 
viscosity in powers of N, substitute in the equations, equate the 
various expressions involving the same power N' of N, and pro
ceed to solve in turn the system of equations for i = 0, 1, 2, . . . . 
In fact, here the process is stopped at i = 1.) 

The zeroth-order solution is the familiar one corresponding to 
constant viscosity, N = 0. For this case, u = u„. One readily finds 
from Eqs. (5), (6), and (7) 

T = T + —— (V 
" 2kH Ky H2 

T = T -
q"H 

3k 

Nu = 
2Hq" 

k(Tw - Tm) 
= 6 

(10) 

(ID 

(12) 

where Nu is the Nusselt number. Proceeding to the next approx
imation, one returns to Eqs. (3) and (8) with T given approximately 
by Eq. (10), and with the reference temperature identified with T„. 
(Since T„ is taken to be a slowly varying function of x, there is no 
harm done in doing this. To determine the precise value of N from 
Eq. (9) one has to specify some particular value of*.) This gives 

(K 

« = — G I+\N\I H2 

= | — G 
AT 

1 + I 

(13) 

(14) 

With these expressions for u and um, one returns to Eqs. (6) and 
(7). Working to first order in N, one gets in turn, after some 
algebraic manipulation, 

d2T 

Jy2-'' 

T-T„ 
<Hq" 

H2 - 1 + N 

kH 

1 

12 

It 
2 H' (15) 

1 -
H' 

T„= -
Hq^ 

k 

6V-H* 

1 2 

3 + 4 5 * 

(16) 

Nu= 61 1 - j^N (18) 

The conclusion is that the effect of variation of viscosity with 
temperature is to the Nusselt number being multiplied by a factor 
of approximately (1 - 2N/15), where N, defined by Eq. (9), 
represents the proportional change of viscosity, across the half-
channel-spacing H, corresponding to that hypothetical linear con
duction temperature gradient in the cross-channel (y-) direction 
which would produce a heat flux q". Looking at Eqs. (13), (15), 
and (17), we see that the change in the value of Nu is a result of 
changes to the velocity profile, the curvature of the temperature 
profile, and the difference between Tm and Tw, in turn. 

For the case of a fluid whose viscosity decreases with increase 
of temperature, N is negative. In moving from the case of zero N 
to that of nonzero negative N, the velocity near the walls is 
increased relative to that in the center of the channel. As a result, 
the curvature of the temperature profile is increased near the walls 
and decreased in the middle of the channel (which has the net 
effect of flattening the overall profile), and this leads to a decrease 

in the magnitude of T„ — Tm, which in turn leads to an increase 
in the magnitude of the Nusselt number Nu. 

The previous analysis has been carried out for just the isoflux 
case. The isothermal case could be treated similarly, but the 
algebraic manipulation would be messier because then trigonomet
ric functions, as well as polynomials, would be involved. We leave 
this extension to another opportunity, and now we concentrate on 
the experimental verification of the model. 

Experimental Hydraulic Verification 

For testing the theory a microporous cold plate was manufac
tured. Electric heaters generating a heat flux q" = 0.59 V2, in 
W/m2, where V is the supply voltage in Volts, were used to heat 
the 0.001 m apart channel plates. The total PAO pressure drop 
across the cold plate, Ap„ = p, — p0, was calculated from the inlet 
Pt and outletp„ pressure measurements. Details on the experimen
tal apparatus and procedure are found in Porneala (1998). 

Using Eq. (14) we can define an expression for the theoretical 
pressure drop Ap across the porous insert when the cold plate is 
heated as 

Ap = 1+yJAp. (19) 

where Ape0 is the pressure drop across the cold plate when the 
heaters are off and the coolant flows at a reference temperature T0 

(taken as the coolant bath temperature, in CC). Using q", H, Eq. 
(1), and /fcPAO = 0.1454 W/m°C, we can simplify Eq. (9) to: N = 
- 2 . 2 X 10~3 V2/T0. 

The verification of Eq. (19) involves measuring Ape0 with the 
heaters off and the coolant flowing at a certain reference (bath) 
temperature, and then using it for comparing the Ap value pre
dicted by Eq. (19) against the Ape measured experimentally under 
different heating conditions. 

The uncertainties of the PAO flow rate Q and of the experimen
tal pressure drop Ape are estimated following the recommenda
tions of Kim et al. (1993). A conservative estimate for the uncer
tainty of the experimental volumetric flow rate reported in this 
work, UQ/Q, is to five percent. 

Because both precision pressure gages are calibrated by the 
manufacturer using the same equipment and procedure, the result
ing bias limit of the pressure difference is zero. Therefore, the 
uncertainty of the pressure drop across the cold plate becomes 
equal to the precision limit PApe. This precision limit is estimated 
as being equal to twice the standard deviation of several measure
ments, or approximately three percent. 

(17) Results 

Figure 1 presents a comparison between the pressure drop 
predicted by Eq. (19) and the pressure drop measured experimen
tally, versus the coolant volumetric flow rate, for a reference 
coolant temperature T0 = 21°C, and V = 46.9 V (q" = 1 . 3 
kW/m2). In this case, JV = - 0 . 2 3 . It can be seen that the 
analytical estimate obtained from Eq. (19) compares very well 
against the experimental measurements when the flow rate is 
small, deviating to slightly smaller values when the flow rate 
increases beyond 3 X 10~5 m3/s. 

As indicated previously, Eq. (19) is expected to be precise for N 
<̂  1 only. To test this limitation, we have performed additional 
hydraulic tests increasing the voltage to V = 114.9 V (q" = 7.8 
kW/m2). In this case, N - - 1.383. The pressure drop predicted 
by Eq. (19) and the experimental pressure drop values are shown 
in Fig. 2. Observe that the agreement between the prediction from 
Eq. (19) and the measured pressure drop Ap,, deteriorates rapidly 
as the volumetric flow rate increases. 

Also plotted in Fig. 2 is the pressure drop measured without 
heating the cold plate, A/?{0. Observe how the measured pressure 
drop, when heating the cold plate, Ape tends to the pressure drop 
with no-heating, Ape0 as the coolant volumetric flow rate in-
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Fig. 1 Pressure drop versus volumetric coolant flow rate for T0 = 21 °C and V = 46.9 V. 
(Uncertainties: U ipe /Ap, = 3 percent, UQIQ = 5 percent). 

creases. This is explained by the departure of the flow from a linear 
velocity regime (the Darcy regime) dominated by viscous drag, to 
a quadratic velocity regime dominated by the form drag. Recall 
that the form drag is independent of the fluid viscosity. This means 
that when the fluid velocity (or the volumetric flow rate) is in
creased, the temperature effect on the viscosity of the coolant will 
affect less and less the pressure drop across the cold plate. Because 
Eq. (19) was derived under the assumption of zero form drag, the 
analytical pressure drop estimate of Esq. (19) is limited to linear 
(viscous drag dominated) flow regimes. One can expect the ana
lytical estimate to deteriorate when the flow rate increases, i.e., 
when the form drag becomes increasingly important. 

For the case shown in Fig. 2, it is relatively easy to determine 
the effective permeability K, and the form coefficient C of the 
porous insert, in m"1, by fitting the experimental no-heating results 
with a function of the type 

L^Q (Q 

^ ° = -TAf
+Lpc (20) 

where L is the cold plate length equal to 0.076 m, Af is the flow 
cross-section area equal to 5.08 X 10~4 m2, and ju,0 and p are the 
PAO viscosity and density at 21°C, respectively, 5.95 X 10-3 

kg/ms and 789.2 kg/m3. The values obtained by curve fitting the 
results of Fig. 2 are K = 3.28 X 10~10 m2 and C = 89.2 X 103 

m"1. As indicated by Lage (1998), the ratio between the form drag 
Dc (responsible for the quadratic flow rate term of Eq. (20)) and 

the viscous drag D^ (responsible for the linear flow rate term of 
Eq. (20)) can be estimated using 

Dc 
D„ 

pCK Q 

1 + 

(21) 

V-a 

where the denominator of the RHS term represents the first-order 
approximation (see Eq. (14)) of the temperature effect on the fluid 
viscosity. 

After substituting the proper values in Eq. (21), one obtains 
DJD^ = 1.42 X 104 Q So, when g ~ 7 X 10~5 m3/s then Dc 

~ D^. This criterion indicates that the results of Figs. 1 and 2 are 
in the range of the transition regime. This is why the analytical 
results deviate from the experimental results as Q increases. 

One of the reviewers has asked for a justification of the high-
Peclet number assumption invoked when writing Eq. (2). For the 
present experimental tests, we can write Pe = QLIAfa. Using the 
values listed previously and aPA0 = 8.68 X 10^5 m2/s we obtain a 
minimum Pe equal to 8,617 establishing that all results satisfy the 
high-Pe assumption. 

Conclusions 
A theory for the thermohydraulic prediction of the single-phase 

convective cooling of a porous medium enhanced enclosure using 
a temperature-dependent viscous fluid is presented. The theory 

Ap (kPa) Eq.(19) 
• Exp. heating, Ape 

"a~ Exp. no-heating, Ape 

• 

, A' ' ^ ^ ~ -

"' " ^^^^ 

^ ' 
• 

- • ' 

..-6 
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Fig. 2 Pressure drop versus volumetric coolant flow rate for 7"0 = 21 °C and V = 114.9 V. 
(Uncertainties: t/ ips/Ape = 3 percent, U0IQ = 5 percent). 
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considers the first-order effect of viscosity variation on the Darcy 
flow regime valid for low fluid speed. 

When applied to the prediction of the pressure drop across a 
microporous enhanced cold plate, the theory anticipates quite well 
the experimental results as long as the viscosity variation number 
is small compared with unity and the flow regime, under heating 
conditions, is linear in velocity, i.e., when the form drag effect is 
negligible. 

Comparisons with experimental results when N is not small 
compared with unity, and the form drag effect becomes compara
ble to the viscous drag effect, indicates a consistent departure of 
the theoretically predicted pressure drop values from the experi
mental values. Obviously, when the form drag predominates, the 
pressure drop can be estimated analytically by neglecting the 
viscous drag, and thus neglecting the heating effect on the fluid 
viscosity. 
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