44,004 research outputs found

    Representation of industrial products in the early stages of design: Drawing and artistic expression in industrial design

    Get PDF
    Comunicació presentada a ICERI 2018 11th annual International Conference of Education, Research and Innovation (Seville, Spain. 12-14 November, 2018)Hand drawing is a basic tool for industrial designers, as it allows them to represent and communicate concepts in an agile way during the initial design phase. Although we can find subjects related to drawing in the first years of all university degrees in industrial design, the way to implement the necessary activities is not always the most appropriate, and it may happen that, despite having practiced sketching, at the end of the course the students do not have the necessary skills to communicate their ideas effectively or adequately represent the reality that surrounds them. This paper proposes twelve groups of activities designed to help industrial design students acquire skills related to hand drawing. The activities were implemented during the second course of the Degree in Industrial Design and Product Development Engineering at Universitat Jaume I, improving those implemented during the last course. The paper analyzes and discusses the positive results of the innovations introduced, which improved the mean grade of the course by 4.48% with respect to the grade obtained the previous year

    Optimal Joins Using Compact Data Structures

    Get PDF
    Worst-case optimal join algorithms have gained a lot of attention in the database literature. We now count with several algorithms that are optimal in the worst case, and many of them have been implemented and validated in practice. However, the implementation of these algorithms often requires an enhanced indexing structure: to achieve optimality we either need to build completely new indexes, or we must populate the database with several instantiations of indexes such as B+-trees. Either way, this means spending an extra amount of storage space that may be non-negligible. We show that optimal algorithms can be obtained directly from a representation that regards the relations as point sets in variable-dimensional grids, without the need of extra storage. Our representation is a compact quadtree for the static indexes, and a dynamic quadtree sharing subtrees (which we dub a qdag) for intermediate results. We develop a compositional algorithm to process full join queries under this representation, and show that the running time of this algorithm is worst-case optimal in data complexity. Remarkably, we can extend our framework to evaluate more expressive queries from relational algebra by introducing a lazy version of qdags (lqdags). Once again, we can show that the running time of our algorithms is worst-case optimal

    Hollowgraphy Driven Holography: Black Hole with Vanishing Volume Interior

    Full text link
    Hawking-Bekenstein entropy formula seems to tell us that no quantum degrees of freedom can reside in the interior of a black hole. We suggest that this is a consequence of the fact that the volume of any interior sphere of finite surface area simply vanishes. Obviously, this is not the case in general relativity. However, we show that such a phenomenon does occur in various gravitational theories which admit a spontaneously induced general relativity. In such theories, due to a phase transition (one parameter family degenerates) which takes place precisely at the would have been horizon, the recovered exterior Schwarzschild solution connects, by means of a self-similar transition profile, with a novel 'hollow' interior exhibiting a vanishing spatial volume and a locally varying Newton constant. This constitutes the so-called 'hollowgraphy' driven holography.Comment: Honorable Mention Essay - Gravity Research Foundation (2010

    Acceleration radiation, transition probabilities, and trans-Planckian physics

    Get PDF
    An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics for the quantum field that originates the created quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities, and local two-point functions. By writing down separate expressions for the spontaneous- and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz invariant way. This analysis also suggests how to define and estimate the role of trans-Planckian physics in the Hawking effect itself.Comment: 19 page

    Satellites of Simulated Galaxies: survival, merging, and their relation to the dark and stellar halos

    Full text link
    We study the population of satellite galaxies formed in a suite of N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find little spatial or kinematic bias between the dark matter and the satellite population. The velocity dispersion of the satellites is a good indicator of the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the rotation speed of their disk components. The detailed kinematics of simulated satellites and dark matter are also in good agreement. By contrast, the stellar halo of the simulated galaxies is kinematically and spatially distinct from the population of surviving satellites. This is because the survival of a satellite depends on mass and on time of accretion; surviving satellites are biased toward low-mass systems that have been recently accreted by the galaxy. Our results support recent proposals for the origin of the systematic differences between stars in the Galactic halo and in Galactic satellites: the elusive ``building blocks'' of the Milky Way stellar halo were on average more massive, and were accreted (and disrupted) earlier than the population of dwarfs that has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Electroweak right-handed neutrinos and new signals at the LHC

    Full text link
    We explore in detail the Higgs phenomenology that results in a model where right-handed neutrinos have a mass scale of the order of the electroweak scale. In this model all scales arise from spontaneous symmetry breaking, and this is achieved with a Higgs sector that includes an extra Higgs singlet in addition to the standard model Higgs doublet. The scalar spectrum includes two neutral CP-even states (hh and HH with mh<mHm_{h} < m_{H})and a neutral CP-odd state (σ\sigma) that can be identified as a pseudo-Majoron. The parameter of the Higgs potential are constrained using a perturbativity criteria. Higgs BR and cross-sections are discussed, with special emphasis on the detection at the LHC.Comment: 22 pages, 10 figure
    corecore