103 research outputs found
Physico-chemical characterization and in vitro biological evaluation of a bionic hydrogel based on hyaluronic acid and l-lysine for medical applications
Hyaluronic acid (HA) is an endogenous polysaccharide, whose hydrogels have been used in medical applications for decades. Here, we present a technology platform for stabilizing HA with a biocrosslinker, the amino acid L-Lysine, to manufacture bionic hydrogels for regenerative medicine. We synthetized bionic hydrogels with tailored composition with respect to HA concentration and degree of stabilization depending on the envisaged medical use. The structure of the hydrogels was assessed by microscopy and rheology, and the resorption behavior through enzymatic degradation with hyaluronidase. The biological compatibility was evaluated in vitro with human dermal fibroblast cell lines. HA bionic hydrogels stabilized with lysine show a 3D network structure, with a rheological profile that mimics biological matrixes, as a harmless biodegradable substrate for cell proliferation and regeneration and a promising candidate for wound healing and other medical applications
Structural build-up of cementitious paste under external magnetic fields
Engineering application processes of fresh concrete include transporting,
pumping, formwork casting, etc. Each process is a significant factor
influencing properties of fresh and hardened concrete. However, many contradicting
requirements of fresh concrete performances (such as structuration rate)
exist in these operation processes. Therefore, advanced techniques need to be
proposed to satisfy future challenges. Actively controlling the stiffness by
applying external magnetic fields would be a potential solution for the contradicting
requirements, and could make the pumping and casting processes smarter
and more reliable. In the present paper, the effects of magnetic field strength and
magnetizing time on structural build-up of cementitious paste are discussed. The
results show that higher magnetic field strengths result in higher percolation time
and lower phase angle at equilibrium state. However, the application of external
magnetic fields with low flux density has little effects on the viscoelastic behaviour
of cementitious paste. Under high magnetic field strengths, the viscousliquid
behaviour dominates the elastic-solid behaviour at early stage, while the
solid-like behaviour becomes more dominant with magnetizing time
Assessment of electrophoresis and electroosmosis in construction materials: effect of enhancing electrolytes and heavy metals contamination
Electrokinetic effects are those that take place by application of an electric field to porous materials, with the zeta potential as the key parameter. Specifically, in the case of contaminated construction materials, the generation of an electroosmotic flux, with the corresponding dragging due to water transport, is a crucial mechanism to succeed in the treatment of decontamination. Therefore, it is of great interest trying to optimize the treatment by the addition of specific electrolytes enhancing the electrokinetic phenomena. Most of the data of zeta potential found in literature for construction materials are based in micro-electrophoresis measurements, which are quite far of the real conditions of application of the remediation treatments. In this paper, electrophoretic and electroosmotic experiments, with monolithic and powdered material respectively, have been carried out for mortar, brick and granite clean and contaminated with Cs, Sr, Co, Cd, Cu and Pb. The electrolytes tested have been distilled water (DW), Na2–EDTA, oxalic acid, acetic acid and citric acid. The zeta potential values have been determined through the two different techniques and the results compared and critically analysed
Preoperative elevation of serum C – reactive protein is predictive for prognosis in myeloma bone disease after surgery
We investigated whether preoperative levels of serum C-reactive protein (CRP) and its correlation with tumour clinicopathological findings adds prognostic information beyond the time of diagnosis in patients with myeloma bone disease (MM) to facilitate the surgical decision-making process. Six hundred and fifty-eight myeloma patients were evaluated retrospectively for surgery. Clinicopathological variables of patients who underwent surgery (n=71) were compared between patients with preoperative CRP ⩾6 mg l−1 and those with CRP <6 mg l−1. Univariate and multivariate analyses were performed to identify prognostic factors after surgery. Patients with an increase of CRP prior to surgery showed inferior survival compared to patients with normal levels. Patients with normal CRP levels at diagnosis but elevations prior to surgery do seem to have a similar unfavourable overall survival (OS) than patients with an increase both, at diagnosis and at surgery. Conversely, patients with normal CRP levels prior to surgery still have the best OS, irrespective of their basic values. Multivariate analysis revealed preoperative CRP levels above 6 mg l−1 Lactate dehydrogenase (LDH) above normal, and osteolyses in long weight bearing bones as independent predictors of survival. These findings suggest that in patients with MM serum levels of CRP increase during disease activity and might be significantly correlated with specific disease characteristics including adverse prognostic features such as osteolyses in long weight bearing bones. Thus, preoperative elevated CRP serum levels might be considered as independent predictor of prognosis and could provide additional prognostic information for the risk stratification before surgical treatment in patients with myeloma bone disease
Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes
As the relative performance of alkali activated slag (AAS) concretes in comparison to portland cement (PC) counterparts for chloride transport and resulting corrosion of steel bars is not clear, an investigation was carried out and the results are reported in this paper. The effect of alkali concentration and modulus of sodium silicate solution used in AAS was studied. Chloride transport and corrosion properties were assessed with the help of electrical resistivity, non-steady state chloride diffusivity, onset of corrosion, rate of corrosion and pore solution chemistry. It was found that: (i) although chloride content at surface was higher for the AAS concretes, they had lower chloride diffusivity than PC concrete; (ii) pore structure, ionic exchange and interaction effect of hydrates strongly influenced the chloride transport in the AAS concretes; (iii) steel corrosion resistance of the AAS concretes was comparable to that of PC concrete under intermittent chloride ponding regime, with the exception of 6 % Na2O and Ms of 1.5; (iv) the corrosion behaviour of the AAS concretes was significantly influenced by ionic exchange, carbonation and sulphide concentration; (v) the increase of alkali concentration of the activator generally increased the resistance of AAS concretes to chloride transport and reduced its resulting corrosion, and a value of 1.5 was found to be an optimum modulus for the activator for improving the chloride transport and the corrosion resistance
Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy
Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor
Reconstruction and simulation of neocortical microcircuitry
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm3 containing ∼31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ∼8 million connections with ∼37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies
- …