354 research outputs found
Morphology of the tropopause layer and lower stratosphere above a tropical cyclone : a case study on cyclone Davina (1999)
During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics
The conformal current algebra on supergroups with applications to the spectrum and integrability
We compute the algebra of left and right currents for a principal chiral
model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We
define primary fields for the current algebra that match the affine primaries
at the Wess-Zumino-Witten points. The Maurer-Cartan equation together with
current conservation tightly constrain the current-current and current-primary
operator product expansions. The Hilbert space of the theory is generated by
acting with the currents on primary fields. We compute the conformal dimensions
of a subset of these states in the large radius limit. The current algebra is
shown to be consistent with the quantum integrability of these models to
several orders in perturbation theory.Comment: 45 pages. Minor correction
The Advantages of Polymer Composites with Detonation Nanodiamond Particles for Medical Applications
ISBN 978-953-307-271-
Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations
We used molecular dynamics simulations based on a potential model in analogy
to the Tight Binding scheme in the Second Moment Approximation to simulate the
effects of aluminum icosahedral grains (dispersoids) on the structure and the
mechanical properties of an aluminum matrix. First we validated our model by
calculating several thermodynamic properties referring to the bulk Al case and
we found good agreement with available experimental and theoretical data.
Afterwards, we simulated Al systems containing Al clusters of various sizes. We
found that the structure of the Al matrix is affected by the presence of the
dispersoids resulting in well ordered domains of different symmetries that were
identified using suitable Voronoi analysis. In addition, we found that the
increase of the grain size has negative effect on the mechanical properties of
the nanocomposite as manifested by the lowering of the calculated bulk moduli.
The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte
Ozone, aerosols and polar stratospheric clouds measurements during the EASOE Campaign
Preliminary results are presented of observations obtained during the EASOE campaign, with an airborne backscatter lidar and a ground-based DIAL ozone lidar system. Although the main signature observed on the lidar signals was due to the Pinatubo cloud which erupted in June 1991, distinct PSC events were detected on several occasions by the airborne lidar often in relation with orographic wave activity over the norvegian mountains. The ozone profiles obtained in Sodankyla with the ground based lidar are locally perturbed by the presence of the volcanic cloud. After a first correction of the aerosols effect, they present however a reasonably good agreement with the ozone sondes profiles performed on the same site
Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence
Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the Earth´s atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere
Edge states and conformal boundary conditions in super spin chains and super sigma models
The sigma models on projective superspaces CP^{N+M-1|N} with topological
angle theta=pi mod 2pi flow to non-unitary, logarithmic conformal field
theories in the low-energy limit. In this paper, we determine the exact
spectrum of these theories for all open boundary conditions preserving the full
global symmetry of the model, generalizing recent work on the particular case
M=0 [C. Candu et al, JHEP02(2010)015]. In the sigma model setting, these
boundary conditions are associated with complex line bundles, and are labelled
by an integer, related with the exact value of theta. Our approach relies on a
spin chain regularization, where the boundary conditions now correspond to the
introduction of additional edge states. The exact values of the exponents then
follow from a lengthy algebraic analysis, a reformulation of the spin chain in
terms of crossing and non-crossing loops (represented as a certain subalgebra
of the Brauer algebra), and earlier results on the so-called one- and
two-boundary Temperley Lieb algebras (also known as blob algebras). A
remarkable result is that the exponents, in general, turn out to be irrational.
The case M=1 has direct applications to the spin quantum Hall effect, which
will be discussed in a sequel.Comment: 50 pages, 18 figure
Reconstruction of computer generated holograms by spatial light modulators
Computer generated holograms generated by using three different numerical techniques are reconstructed optically by spatial light modulators. Liquid crystal spatial light modulators (SLM) on transmission and on reflection modes with different resolutions were investigated. A good match between numerical simulation and optically reconstructed holograms on both SLMs was observed. The resolution of the optically reconstructed images was comparable to the resolution of the SLMs. © Springer-Verlag Berlin Heidelberg 2006
- …