We compute the algebra of left and right currents for a principal chiral
model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We
define primary fields for the current algebra that match the affine primaries
at the Wess-Zumino-Witten points. The Maurer-Cartan equation together with
current conservation tightly constrain the current-current and current-primary
operator product expansions. The Hilbert space of the theory is generated by
acting with the currents on primary fields. We compute the conformal dimensions
of a subset of these states in the large radius limit. The current algebra is
shown to be consistent with the quantum integrability of these models to
several orders in perturbation theory.Comment: 45 pages. Minor correction