368 research outputs found

    Feeding Periodicity and Prey Habitat Preference of Red Snapper, Lutjanus campechanus (Poey, 1860) on Alabama Artificial Reefs

    Get PDF
    Conclusive understanding of the role temperate artificial reefs play in the trophic dynamics of Lutjanus campechanus (Poey, 1860) is limited. Thus, diel feeding habits of red snapper on artificial reefs were examined using gut fullness, diet composition, and prey habitat preferences. Red snapper were collected by hook and line from artificial reefs off Alabama in July and Aug. 2000. Examination of stomach contents found red snapper feeding upon fish, demersal crustaceans, and pelagic zooplankton. Although other studies suggest that lutjanids primarily feed nocturnally, red snapper in this study fed throughout the day and night. Significant differences in gut fullness were found between 2-hr time intervals; however, no obvious pattern in feeding periodicity was evident. Although fish was the largest diet component by weight for both day and night during diel sampling, examination of prey habitat preferences indicate that red snapper fed on more water-column organisms during the day and more sand- or mud-associated organisms at night. Based on our interpretation of these results, we hypothesize that red snapper reside above the reefs during the day, opportunistically feeding mostly upon water-column-associated organisms and some benthic prey. At night they may move away from the reef to consume nocturnally active fishes and benthic crustaceans

    Mechanical Translation

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant G-24047

    Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    Get PDF
    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 ÎĽg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 ÎĽm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor

    Get PDF
    The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier

    Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

    Get PDF
    Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations

    Balance between matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in the cervical mucus plug estimated by determination of free non-complexed TIMP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cervical mucus plug (CMP) is a semi-solid structure with antibacterial properties positioned in the cervical canal during pregnancy. The CMP contains high concentrations of matrix metalloproteinase 8 and 9 (MMP-8, MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). This indicates a potential to degrade extracellular matrix components depending on the balance between free non-complexed inhibitors and active enzymes.</p> <p>Methods</p> <p>Thirty-two CMPs collected during active labor at term were analyzed. Twelve CMPs were separated into a cellular and an extracellular/fluid phase and analyzed by gelatin and reverse zymography to reveal MMP and TIMP location. Twenty samples were homogenized, extracted and studied by the TIMP activity assay based on gelatin zymography. Enzyme-linked immunosorbent assay (ELISA) was used to determine TIMP-1, MMP-8 and MMP-9 protein concentrations, and gelatin and reverse zymography used to identify gelatinases and TIMPs, respectively. The Western blotting technique was applied for semi-quantification of alpha2-macroglobulin. An ELISA activity assay was used to detect MMP-8 and MMP-9 activity.</p> <p>Results</p> <p>ProMMP-2, proMMP-9, TIMP-1 and TIMP-2 were almost exclusively located in the fluid phase compared to the cellular phase of the CMP. All the extracted samples contained MMP-8, MMP-9, TIMP-1, TIMP-2 and alpha2-macroglobulin. Free non-complexed TIMP was detected in all the samples analyzed by the TIMP activity assay and was associated with TIMP-1 protein (R = 0.71, p < 0.001) and with the TIMP/MMP molar ratio (1.7 (1.1–2.5) (mean (95% confidence interval)) (R = 0.65, p = 0.002). The ELISA activity assay showed no activity from MMP-8 or MMP-9.</p> <p>Conclusion</p> <p>Due to their extracellular location, potential proteolytic activity from neutrophil-derived MMPs in the CMP could exert a biological impact on cervical dilatation and fetal membrane rupture at term. The functional TIMP activity assay, revealing excess non-complexed TIMP, and a molar inhibitor/enzyme ratio above unity, indicate that refined MMP control prevents CMP-originated proteolytic activity in the surrounding tissue.</p

    Functional polymorphisms in the promoter regions of MMP2 and MMP3 are not associated with melanoma progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The matrix metalloproteinases (MMPs) are enzymes that cleave various components of the extracellular matrix (ECM) and basement membranes. MMPs are expressed in melanocytes and their overexpression has been linked to tumor development, progression and metastasis. At the genetic level, the following functional promoter polymorphisms are known to modify the gene transcription: -1306 C/T and -735 C/T in the MMP2 gene, and -1171 5A/6A in the MMP3 gene. Functional polymorphisms in MMP genes' promoter regions may modulate the risk for melanoma progression.</p> <p>Methods</p> <p>We evaluated MMP2 and MMP3 germline polymorphisms in a group of 1002 melanoma patients using PCR-based methods, including fragment size analysis and melting temperature profiles. Two-sided Chi-Square, Cochran-Armitage tests for trend, Fisher's exact tests, and Kendall's Tau tests were performed to evaluate the associations between genotype and various clinical and epidemiologic factors. Multivariate analyses were conducted using logistic regression, adjusting for known melanoma confounders such as age, sex, phenotypic index, moles, freckles, and race. Survival estimates were computed using the Kaplan-Meier method and differences in survival were assessed using the log rank test.</p> <p>Results</p> <p>All genotypes were in Hardy-Weinberg equilibrium. After adjustment for age, sex and phenotypic characteristics of melanoma risk, no significant associations were identified with the clinical, pathological, and epidemiological variables studied. The melting profile for MMP2 -735 C/T identified a new change in one sample. A new PCR-amplification followed by direct sequencing confirmed a heterozygote G to A substitution at position -729.</p> <p>Conclusion</p> <p>This study does not provide strong evidence for further investigation into the role of the MMP2 and MMP3 variants in melanoma progression.</p
    • …
    corecore