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Chronic, painful conditions affecting tendons, frequently
known as tendinopathy, are very common types of sporting
injury. The tendon extracellular matrix is substantially
altered in tendinopathy, and these changes are thought to
precede and underlie the clinical condition. The tendon cell
response to repeated minor injuries or ‘‘overuse’’ is thought
to be a major factor in the development of tendinopathy.
Changes in matrix turnover may also be effected by the
cellular response to physical load, altering the balance of
matrix turnover and changing the structure and composition
of the tendon. Matrix turnover is relatively high in tendons
exposed to high mechanical demands, such as the supraspi-
natus and Achilles, and this is thought to represent either a

repair or tissue maintenance function. Metalloproteinases
are a large family of enzymes capable of degrading all of the
tendon matrix components, and these are thought to play a
major role in the degradation of matrix during development,
adaptation and repair. It is proposed that some metallopro-
teinase enzymes are required for the health of the tendon,
and others may be damaging, leading to degeneration of the
tissue. Further research is required to investigate how these
enzyme activities are regulated in tendon and altered in
tendinopathy. A profile of all the metalloproteinases ex-
pressed and active in healthy and degenerate tendon is
required and may lead to the development of new drug
therapies for these common and debilitating sports injuries.

Tendon injuries and chronic tendon pain are extre-
mely common in athletes, as well as in the general
population. Despite their prevalence, these condi-
tions are poorly understood and often do not re-
spond well to treatment. There are many articles,
which discuss the potential causes and treatment of
tendon pathology (tendinopathy), but few have in-
vestigated the molecular processes underlying the
condition. This review summarizes recent work in-
vestigating the molecular composition of the human
tendon extracellular ‘‘matrix’’, and how this is al-
tered in chronic tendinopathy. These studies have
shown that the cells resident within the tendon,
known as ‘‘tenocytes’’, are capable of synthesizing
and degrading the tendon matrix, a process of ‘‘turn-
over’’ that is important in the tissue response to
exercise, mechanical strain and injury. The pattern
of loading (whether tensile or compressive, for ex-
ample) as well as its magnitude and duration, is
fundamental in the regulation of the tenocyte remo-
delling response. This review will highlight the role of
matrix-degrading enzymes in tendon matrix turn-
over, and discuss their role in tendon health and
disease.

The etiology of tendinopathy

Most tendinopathy is associated with multiple
factors such as increased age, reduced vascular
perfusion, anatomical variation (e.g. leg-length dis-
crepancy), occupation and the level and type of
sporting activity (Leadbetter, 1992; Józsa & Kannus,
1997a; Kannus, 1997; Riley, 2004a). The pattern and
duration of physical stress experienced by the tendon
is generally thought to be one of the most important
factors, since tendons at sites exposed to high me-
chanical demands are more often affected. These
include the supraspinatus tendon in the shoulder,
the extensor carpi radialis brevis tendon at the elbow,
the patellar tendon at the knee and the Achilles at the
ankle. However, most cases of tendinopathy occur in
the absence of any single traumatic episode, and are
associated with repeated low-level loading of the
muscle–tendon unit, frequently described as ‘‘over-
use’’ injuries (Józsa & Kannus, 1997a).
Although once considered almost inert, the activ-

ity of the tendon cell (tenocyte) is thought to play a
pivotal role in the pathology of tendinopathy. Teno-
cytes synthesize and degrade the tendon extracellular
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matrix, a process of matrix turnover that is normally
well-regulated and essential for maintaining the
structural properties of the tissue. An imbalance of
matrix turnover is implicated in other degenerative
conditions such as osteoarthritis (Clark & Parker,
2003), which suggests that reduced matrix synthesis
or increased matrix degradation may be targets for
future drug therapy of tendinopathy.

Histopathology of tendinopathy

The structure and histology of tendon and tendino-
pathy have been described in detail elsewhere and
only general features are discussed in this review –
the reader is recommended to refer to the following
sources for more information (Kannus & Józsa,
1991; Åström & Rausing, 1995; Jarvinen et al.,
1997; Józsa & Kannus, 1997a; Józsa & Kannus,
1997b; Benjamin, 2004).
Tendon is a dense fibrous connective tissue, con-

sisting of relatively few fibroblasts (tenocytes) em-
bedded in a collagen-rich matrix. Haematoxylin and
eosin (H&E) preparations of human Achilles tendon
show the highly organized collagen fibril bundles
running longitudinally through the matrix and the
elongated tenocyte nuclei squeezed between them
(See Fig. 1a). The cells are generally widely dispersed,
although they have been shown to communicate
with each other via gap junctions at the end of long
cellular processes, both longitudinally and laterally
throughout the tendon (McNeilly et al., 1996).
A typical feature of painful Achilles tendinopathy,

shared with other tendon lesions at various sites,
is an infiltration of blood vessels and increased
cellularity, a so-called ‘‘angiofibroblastic’’ response

(Leadbetter, 1992; Jarvinen et al., 1997) (See Fig. 1b).
The majority of cells at the site of the lesion
are fibroblasts, often rounded or ovoid, and there is
rarely any evidence of inflammatory cells within the
tendon, or in the surrounding paratenon (Åström &
Rausing, 1995). The proteoglycan content is in-
creased compared with normal tendon, as shown
by toluidine blue staining of the matrix (Fig 1c and
d). These degenerative changes are thus thought to
represent an active, cell-mediated process that results
in substantial changes to the structure and composi-
tion of the tendon matrix.

The biochemistry of tendinopathy

Several studies have addressed the major biochemical
changes in tendon matrix composition in human
tendinopathy (Riley et al., 1994a, b, 1996a, b, 2002;
Bank et al., 1999; Ireland et al., 2001). Predominantly
consisting of collagen, there are many other matrix
constituents, including proteoglycans and non-
collagen glycoproteins, many of which are poorly
characterized (Aumailley & Gayraud, 1998). For
example, there are 27 different collagen molecules
now identified, although little is known about the
tissue distribution and function of the less abundant
‘‘minor’’ collagens, particularly types XX to XXVII
which were discovered relatively recently (Fitzgerald
& Bateman, 2001; Koch et al., 2001; Hashimoto
et al., 2002; Sato et al., 2002; Banyard et al., 2003;
Boot-Handford et al., 2003; Koch et al., 2003; Pace
et al., 2003; Myllyharju & Kivirikko, 2004).
A normal tendon contains mostly type I collagen,

estimated to represent almost 95% of the total
collagen, with smaller amounts of collagen types

Fig. 1. Histopathology of tendinopa-
thy. Normal Achilles tendon from a
cadaver (a, c) and a surgical specimen
from a patient with tendinopathy (b,
d) were fixed, frozen and prepared for
standard histology. (a) and (b) were
stained with haemotoxylin and eosin,
(c) and (d) were stained with toluidine
blue to show matrix proteoglycans/
glycosaminoglycans. (a) Normal ten-
don histology, with long thin fibro-
blasts dispersed in the ordered fibrillar
matrix. (b) Blood vessel (BV) infiltra-
tion and cellular proliferation within
the degenerate tendon lesion, with no
inflammatory cells visible. (c) Relative
absence of proteoglycans in the nor-
mal tendon matrix. (d) A substantial
increase in proteoglycan throughout
the degenerate tendon matrix.
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III, V, VI, XII and XIV, at levels which are difficult
to quantitate by current methodologies (Riley,
2004b). In addition, collagen types II, IX, X and
XI are present at specific sites of ‘‘fibrocartilage,
found at the bone insertion and where the tendon
is subject to shear forces or compression (Fukuta
et al., 1998; Waggett et al., 1998). These ‘‘minor’’
collagens, although a very small proportion of the
total, are implicated in a number of important
processes including collagen fibril formation, regu-
lating the ultimate diameter of the fibrils and mediat-
ing interactions with the surrounding cells and
matrix (Aumailley & Gayraud, 1998).
Most is known about the major fibrillar collagens

of tendon, types I and III, since these are more
amenable to analysis, most abundant and more
readily extracted from the tissue, which becomes
increasingly insoluble with age (Riley et al., 1994a).
We have previously shown that degenerate tendons,
such as the supraspinatus in the shoulder, have a
small but significant reduction in the total collagen
content relative to the tissue dry weight (Riley et al.,
1994a). This was partly because of an increase in the
non-collagen glycoprotein content, as well as in-
creases in matrix proteoglycan (Riley et al., 1994b).
The type and distribution of collagen also changed,
with an increase in the proportion of type III
collagen and a corresponding decrease in the con-
centration of type I collagen (Riley et al., 1994a). The
type III collagen was found associated with the type I
collagen fibril bundles by immunohistochemistry,
thought to be intercalated into the fibrils, suggesting
that the original fibrils had been extensively remo-
delled, resulting in a greater proportion of small
diameter and randomly organized fibrils. The col-
lagen was more readily extracted from degenerate
tendon, although the level of mature collagen cross-
links was elevated compared with normal (Bank
et al., 1999). Thus it appeared that the newly synthe-
sized collagen had been resident in the tissues at least
long enough for the maturation of collagen cross-
links, after whatever stimulus had driven the change
in collagen synthesis.
The levels of the glycation cross-link, pentosidine,

a marker of the molecular age of the matrix, was also
lower than expected for the age of the individual,
confirming that much of the original fiber network
had been replaced by new collagen (Bank et al.,
1999). This finding was confirmed by analysis of
the racemization of aspartate, another marker of
protein residence time (Riley et al., 2002). Macro-
scopically normal supraspinatus tendons showed
relatively high levels of matrix turnover compared
with normal biceps brachii tendons (which showed
very little if any matrix turnover), although less than
degenerate supraspinatus. These data are consistent
with the hypothesis that increased matrix turnover is

associated with the sub-clinical matrix degeneration
that precedes the clinical condition. Similar biochem-
ical evidence now exists for the Achilles, suggesting
that remodelling of the tendon is a general feature
of tendinopathy (Eriksen et al., 2002). Whether this
remodelling weakens the tendon is a moot point,
since many cases of painful tendinopathy persist for
months if not years, and do not go on to rupture.
Very little is known about the changes in proteo-

glycan in tendinopathy, apart from the generalized
increase in sulfated glycosaminoglycan, the majority
of which was chondroitin sulfate (Riley et al., 1994b).
There are several proteoglycan species in tendon,
including the large hyalectans, aggrecan and ver-
sican, and the small leucine-rich proteoglycans
(SLRP), decorin, biglycan, fibromodulin and lumi-
can (Berenson et al., 1996; Waggett et al., 1998).
Versican is thought to be the major hyalectan in the
tendon mid-substance and aggrecan is more abun-
dant in fibrocartilage. Of the SLRPs, decorin is the
most abundant and the biglycan content is increased
in fibrocartilaginous regions. Thus the proteoglycan
content is an indicator of the ‘‘mechanical history’’ of
tendon, with regions exposed to predominantly ten-
sile load rich in versican and decorin, and regions
that are compressed or subject to shear forces (such
as the insertion) are rich in aggrecan and biglycan.
The proteoglycans turn over much more rapidly than
fibrillar collagen, as part of the normal tissue main-
tenance, although hyalectans have a greater rate of
turnover than the SLRP (Rees et al., 2000; Samiric et
al., 2004a, b). Apart from acting to hold water in the
tissues, the proteoglycans have roles in the resistance
of compression, lubricating movement of adjacent
fiber bundles, mediating cell–matrix interactions and
the sequestration of growth factors and enzymes
in the matrix (Hardingham & Fosang, 1992). It is
uncertain what role, if any, fibrocartilage plays in
tendinopathy, although pathology is frequently
found in fibrocartilaginous regions of tendon, which
are avascular and therefore potentially less capable
of repair. For example, it has been postulated that
fibrocartilage may develop in tendon in response to
excessive shear or compressive forces, and may be a
precursor of pathology (Cawston et al., 1996). On the
other hand, fibrocartilage formation may be part of
the normal adaptive process, which functions to
protect tendon against potentially harmful patterns
of loading (Vogel & Koob, 1989).
Non-collagen glycoproteins in tendon include

tenascin-C, cartilage oligomeric matrix protein
(COMP), fibronectin, elastin, fibrillin, laminin and
link protein (Józsa & Kannus, 1997a; Kannus, 2000;
Riley, 2004b). Again, relatively little is known about
changes in glycoprotein content in tendinopathy.
Fibronectin and tenascin-C are up-regulated after
injury, and are thought to play a role in modulating
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cell migration and activity (Mackie et al., 1988;
Lehto et al., 1990; Amiel et al., 1991). There are
changes in the expression of tenascin-C in chronic
tendinopathy, with changes in the splice variants
expressed as well as increased abundance, predomi-
nantly associated with rounded cells in the degener-
ate matrix (Riley et al., 1996b).
In summary, the biochemical changes in tendi-

nopathy are still relatively poorly characterized,
although the evidence to date is consistent with the
hypothesis that accumulated ‘‘micro-trauma’’ affect
the cellular expression of many different matrix
components. The question remains whether this
represents a response to injury (i.e. damage to the
matrix structure) or modulation of the tenocyte
activity by mechanical strain, directly affecting the
turnover of tendon matrix components.

Adaptation of tendon and the response
to mechanical load

Studies with animals have shown that changes in
matrix quantity and quality can be induced by
altering the mechanical strain experienced by the
tendon (Gillard et al., 1979; Woo et al., 1981, 1982;
Tipton et al., 1986; Akeson et al., 1987; Curwin et al.,
1988; Hannafin, 1995; Yasuda & Hayashi, 1999). The
most dramatic changes can be induced by immobili-
zation or stress-shielding, resulting in a fairly rapid
loss of tendon strength and a reduction in the matrix
(collagen) mass (Tipton et al., 1986; Akeson et al.,
1987; Yasuda & Hayashi, 1999). There is a reduction
in the total area of collagen fibrils in the tendon
cross-section, and an increased number of thin and
immature fibrils (Yasuda & Hayashi, 1999). The
changes in tensile properties were dependent on the
presence of a viable cell population, and could be
reversed by the application of cyclic tensile loading
in vitro (Hannafin, 1995). Similar results were re-
ported for in vivo studies, with the tendon slowly
returning to normal after the resumption of loading,
although the insertion responds more slowly com-
pared with the mid-substance (Woo et al., 1987).
Mechanical load is important for improving the
strength of healing tendon after injury (Gelberman
et al., 1981), although the response of normal tendon
to exercise is more equivocal. Small increases in the
material properties of exercised tendons have been
reported, although these were studies of relatively
immature animals, and may not reflect the situation
in adult tendon (Woo et al., 1981, 1982; Curwin
et al., 1988). Indeed, studies of equine tendons have
suggested that exercise may have only a deleterious
effect on the adult tendon matrix, and only immature
tendons are capable of an adaptive response (Patter-
son-Kane et al., 1997; Smith et al., 1999; Smith et al.,

2002). However, studies of human tendon using
dialysis catheters placed adjacent to the tendon
have shown that acute exercise in healthy volunteers
will stimulate collagen synthetic activity, in addition
to increasing tendon blood flow, metabolic activity
and the release of certain inflammatory mediators
and matrix-degrading matrix metalloproteinases
(MMP) (Langberg et al., 1998, 1999, 2001; Kjaer
et al., 2000; Heinemeier et al., 2003; Koskinen et al.,
2004). Since isolated tendon cells can be stimulated
to produce interleukin (IL)-1b, cyclooxygenase 2
(COX 2) and MMP (MMP-1 and MMP-3) by
mechanical load and fluid-induced shear stress
in vitro, an affect that may be modulated by negative
feedback from extracellular ATP, this provides a
theoretical basis for the induction of tendinopathy
by repeated cyclical loading below the injury thresh-
old (Archambault et al., 2002; Tsuzaki et al., 2003a).

Mediators of matrix degradation – the MMPs

Proteolytic activity is an essential component of
tissue growth, maintenance, adaptation and repair.
After injury, proteolysis is required to remove any
damaged matrix and remodel the newly formed scar
so that it more closely resembles the normal tissue.
Some collagen in tendon is probably degraded in-
tracellularly after phagocytosis, with fibroblasts and
macrophages engulfing collagen molecules which are
then digested by lysosomal enzymes (Everts et al.,
1996; Creemers et al., 1998). This is a major activity
in the rapidly remodelling peridontal ligament,
although few studies have investigated the relative
importance of this route in tendon. Most studies
have focused on collagen degradation occurring in
the extracellular environment and mediated by se-
creted enzymes known as MMP.
Comprehensive reviews of the MMP have been

published elsewhere and only salient points are
reviewed here (Matrisian, 1990; Murphy et al.,
1994; Nagase, 1994; Birkedal-Hansen, 1995; Caw-
ston, 1995; McCawley & Matrisian, 2001; Clark &
Parker, 2003). MMP are members of the ‘‘MB’’ clan
of metallopeptidases, generically referred to as ‘‘met-
zincins’’ since they contain zinc at the active site and
a conserved methionine eight residues downstream.
They possess activity at neutral pH against a broad
spectrum of different matrix substrates. Although
important in matrix degradation, MMP also have
activity against cell surface receptors and growth
factor precursors (McCawley & Matrisian, 2001).
Consequently these enzymes also have an important
role in the regulation of numerous cellular activities
including cell proliferation, cell death (apoptosis),
cell migration and chemotaxis (McCawley & Matri-
sian, 2001).
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There are 23 MMPs found in human, which can be
subdivided into collagenases, gelatinases, stromely-
sins and membrane-type MMP, based on their struc-
tures and substrate specificities (Nagase, 1994;
Cawston, 1995; Clark & Parker, 2003) (See Fig. 2).
Collagenases are some of the few enzymes capable of
cleaving the intact type I collagen molecule in the
extracellular environment, which occurs at a specific
locus in the triple helix between residues 775 and 776
(Cawston, 1995). The initial cleavage by a collage-
nase is the rate-limiting step in fibrillar collagen
turnover, generating 3

4 and 1
4 length fragments that

are susceptible to other enzymes such as the gelati-
nases. MMPs with collagenase activity include
MMP-1 (collagenase-1; EC 3.4.24.7), MMP-8 (neu-
trophil collagenase; EC 3.4.24.34), MMP-13 (collage-
nase-3; MEROPS ID M10.013), MMP-2 (gelatinase
A; EC 3.4.24.24) and MMP-14 (MT1-MMP; MER-
OPS ID M10.014). The collagenases differ in their
activities against the various fibrillar collagens,
although precisely which enzymes are implicated in
the physiological and pathological turnover of con-
nective tissues such as tendon is still the subject of
research.
The activities of MMPs are normally tightly con-

trolled in vivo, with regulation at the levels of
transcription, translation, activation and inhibition.
In general, expression and activity of the MMPs is
stimulated by pro-inflammatory cytokines such as
IL-1 and tumour necrosis factor (TNF), and inhib-
ited by growth factors such as transforming growth
factor-b (TGF-b). MMPs are potently inhibited by a
2 macroglobulin in the serum, and also by a family of

specific inhibitors produced by cells within the tissues
known as tissue inhibitors of metalloproteinases
(TIMPs) (Murphy et al., 1994; Cawston, 1995;
Murphy & Willenbrock, 1995). There are four
TIMPs that have been characterized to date, and
these may be constitutively expressed, such as TIMP-
2, or stimulated by growth factors such as TGF-b,
such as TIMP-1 and TIMP-3. Each TIMP will bind
to active MMPs in a stoichiometric (1:1) ratio,
resulting in a stable, inactive complex.

Mediators of matrix proteoglycan degradation – the
‘‘aggrecanases’’

Proteoglycans are turned over much more rapidly
than the fibrillar collagens (Birkedal-Hansen, 1995;
Cawston, 1995). Although some members of the
MMP family such as MMP-3 (stromelysin-1) can
degrade proteoglycans such as aggrecan in vitro,
most activity in vivo is associated with a related but
distinct group of metallo-endopeptidases, commonly
known as ‘‘aggrecanases’’.
Aggrecanases were first identified on the basis of

their ability to cleave aggrecan at specific Glu–Xaa
bonds, with a major site in the interglobular (IGD)
domain of the aggrecan core protein (Glu373–Ala374),
resulting in the loss of the glycosaminoglycan-rich
portion of the molecule from the tissue (Sandy et al.,
1991). This activity was associated with the loss of
cartilage proteoglycan that accompanies osteoarthri-
tis (Sandy et al., 1992). Aggrecanases were sub-
sequently identified as members of the a disintegrin
and metalloproteinase (ADAM)-thrombospondin
(TS) family, a sub-group of ADAM with TS type I
motifs (Kaushal & Shah, 2000; Cal et al., 2002).
To date, 19 mammalian ADAMTS enzymes have

been identified, many of which remain to be fully
characterized (Kaushal & Shah, 2000; Cal et al.,
2002) (See Fig. 3). ADAMTS-2, ADAMTS-3 and
ADAMTS-14 are pro-collagen peptidases, and func-
tion as key regulators of collagen fibril assembly
(Colige et al., 1999; Fernandes et al., 2001; Colige
et al., 2002). ADAM-TS4 (aggrecanase 1) and
ADAM-TS5 (aggrecanase 2) were the first aggreca-
nases to be identified (Abbaszade et al., 1999; Tor-
torella et al., 1999; Kaushal & Shah, 2000) although
activity has since been also attributed to the phylo-
genetically related enzymes ADAMTS-1, ADAMTS-
8, ADAMTS-9 and ADAMTS-15 (Kuno et al., 2000;
Yamaji et al., 2000; Somerville et al., 2003; Collins-
Racie et al., 2004). Best known for their activity
against aggrecan, ADAMTS1 and ADAMTS-4 are
also capable of cleaving other matrix proteoglycans
such as versican and brevican (Sandy et al., 2001),
and glycoproteins such as COMP (Dickinson et al.,
2003), at least in vitro. Although inhibition of

Matrix metalloproteinases (MMP)

A family of 23 enzymes
Collagenases: MMP-1, -8, -13
Gelatinases: MMP-2, -9
Stromelysins: MMP-3,-10
Membrane-type MMPs: MMP-14, -15, -16, -17, -24

Regulated at various levels
Synthesised as inactive pro-enzyme
Activated by other proteinases
Inhibited by TIMP (TIMP-1, TIMP-2, TIMP-3, TIMP-4)

Signal Pro Catalytic domain Hinge   Hemopexin

Fig. 2. The matrix metalloproteinase family. Diagram of
the general domain structure of matrix metalloproteinases
(MMP). Most MMP are synthesized with a pro-domain,
which is enzymatically removed to activate the enzyme. The
catalytic domain contains zinc at the active site. The hemo-
pexin domain is essential for the substrate specificity of
collagenases. There are variations in structure between the
different family numbers, some of which lack the hemopexin
domain and others also possess a trans-membrane domain.
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ADAMTS-4 and -5 can prevent cartilage degrada-
tion in tissue culture models (Tortorella et al., 2001),
the enzymes responsible for proteoglycan degrada-
tion in osteoarthritis and other diseases of connective
tissues have yet to be identified.
Aggrecanase activity is thought to be regulated at

multiple levels, although the mechanisms are cur-
rently poorly understood. Differential regulation of
ADAMTS mRNA has been deduced from analysis
of their expression in cell and explant cultures, albeit
with considerable variation between studies (Cater-
son et al., 1999; Tortorella et al., 2001; Vankemmel-
beke et al., 2001; Koshy et al., 2002; Tsuzaki et al.,
2003b). A study of human tendon cells recently
reported small and variable effects of IL-1 on
ADAMTS-4 expression (Tsuzaki et al., 2003b).
In addition to regulation of gene transcription, the

activities of ADAMTS enzymes are also subject to
post-translational regulation. The non-catalytic an-
cillary domains of ADAMTS-4 are required for both
catalytic activity and substrate specificity (Flannery
et al., 2002; Kashiwagi et al., 2003). Full-length
enzyme is sequestered in the matrix via GAG-bind-
ing sequences in the spacer domain, and sulfated
GAGs attached to the aggrecan core protein are
required for ADAMTS-4 activity (Kashiwagi et al.,
2003). Deletion of the C-terminal spacer domain
increased the efficiency of hydrolysis of aggrecan
at Glu373–Ala374 bonds, and revealed new activities
against fibromodulin, decorin and a general protein
substrate (Kashiwagi et al., 2003). Several short
forms of ADAMTS-4 are found in cartilage, thought
to be generated by autocatalytic C-terminal trunca-
tion, potentially contributing to the degradation of a

broad range of protein substrates in addition to PGs
(Flannery et al., 2002; Kashiwagi et al., 2003). The
enzymes are thought to be secreted in an active form
after cleavage of the pro-domain within the cell by
furin, which may be followed by C-terminal trunca-
tion by MMP-17 at the cell surface (Gao et al., 2003;
Wang et al., 2004). Active ADAMTS are inhibited by
the endogenous inhibitor TIMP-3, but not by other
TIMPs (Kashiwagi et al., 2001).

Matrix degradation in tendinopathy

Several MMP have been implicated in matrix degra-
dation of tendon. Specimens of human rotator cuff
tendons placed in culture were shown to synthesize
collagenase (MMP-1) and TIMP-1, and there was no
significant difference between normal and degenerate
tendons (Dalton et al., 1995). Thus degenerate ten-
dons were shown to be capable of remodelling the
tendon matrix, even at a late stage of the disease,
although the factors regulating this activity in vivo
were not identified (Dalton et al., 1995). A compar-
ison of human tendons showed substantial differ-
ences in collagen turnover between tendons from
different sites. There was very little collagen turnover
in normal biceps brachii tendons, which contained
no significant levels of metalloproteinase activity and
the linear accumulation of pentosidine with increas-
ing age (Riley et al., 2002). In contrast, supraspinatus
tendons obtained from normal shoulders showed
relatively high levels of collagen turnover, with lower
levels of pentosidine than expected for the age of the
tissue, and there were correspondingly high levels of
MMP-1, MMP-2 and MMP-3 activity (Riley et al.,
2002). These enzyme activities were thought to re-
present either a repair or maintenance function,
occurring in the normal supraspinatus as a result of
the high mechanical demands placed upon the ten-
don in the shoulder. It may also be associated with an
underlying degenerative process, which was common
in asymptomatic shoulders, potentially caused by
repeated minor injuries, mechanical strain or ‘‘over-
use’’. In ruptured supraspinatus tendon there was
increased activity of MMP-1, reduced activity of
MMP-2 and MMP-3, and evidence of increased
turnover of the collagen network (Riley et al.,
2002). The potential role of MMPs in (or after)
tendon rupture was also demonstrated by a study
of synovial fluids from patients with rotator cuff
tears. There were high levels of expression of both
MMP-1 and MMP-3, with no change in the levels
of TIMP-1, and the levels of enzyme correlated with
the size of tear (Yoshihara et al., 2001). Glycosami-
noglycan levels were also higher in fluids from
massive tears compared with partial tears, consistent
with increased turnover of matrix proteoglycans

ADAMTS enzymes
(A Disintegrin And Metalloproteinase
with ThromboSpondin-like repeats)

•
Aggrecanases: ADAMTS-1, -4, -5, -8, -9, -15, -20
Pro-collagen peptidases: ADAMTS-2, -3, -14

•
Synthesised in active form
Bound to matrix/cell surface via specific interactions
Modulated by enzymatic cleavage
Inhibited by TIMP-3

Cys-rich Spacer SpacerTS TSPro Metalloproteinase Disintegrin

Regulated at multiple levels

A family of 19 members

Fig. 3. The ADAMTS family of enzymes. Diagram of the
general domain structure of the ADAMTS enzymes. Several
members of the family are able to cleave proteoglycans such
as aggrecan and versican and are given the generic
title ‘‘aggrecanases’’. Other members of the family are pro-
collagen peptidases, involved in the processing of collagen
molecules prior to the formation of fibrils. The functions
of the remaining family members are currently poorly
understood.
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(Yoshihara et al., 2001). Immunolocalization of
ruptured supraspinatus showed MMP-1 expressed
in the tendon at the edge of the tear (Gotoh et al.,
1997). Tendon degeneration was thus shown to be an
active, cell-mediated process that may result from a
failure to regulate specific MMP activities in response
to repeated injury or mechanical strain. It is most
likely to be mediated by the resident tenocyte popu-
lation, although some contribution from surround-
ing tissues and infiltrating cells cannot be definitively
excluded in pathological situations. It has also been
demonstrated that matrix turnover is substantially
higher in tendons exposed to high mechanical de-
mands (Riley et al., 2002), and this is thought to
represent either a repair or maintenance function.
Relatively little is currently known about proteo-

glycan turnover in tendinopathy. Since levels of
proteoglycan are increased in the degenerate tendon
lesion (unlike degenerate cartilage) it will be interest-
ing to determine whether this is caused by an increase
in proteoglycan synthesis or a decrease in proteogly-
can degradation mediated by aggrecanases (or both).
These studies are currently hampered by the limited
availability of sensitive and specific aggrecanase
activity assays, although technical developments in
this area are expected soon.

Gene expression in tendinopathy

Analysis of gene expression in human tendon speci-
mens has not been widely attempted, although tech-
niques of molecular biology such as cDNA arrays
and real time reverse transcriptase-polymerase chain
reaction (RT-PCR) are capable of providing at least
a semi-quantitative analysis of many different gene
targets in very small tissue samples, such as can be
obtained from tendon biopsies. These techniques
are highly sensitive, specific and can provide useful
information about cell activities in the tissue.
There are two published studies describing the use

of cDNA arrays to investigate gene expression in
Achilles tendinopathy (Ireland et al., 2001; Alfredson
et al., 2003). A number of genes were found to show
either increased or decreased expression in dege-
nerate tendon, however in several cases apparent
changes in gene expression were not confirmed by
RT-PCR analysis of a greater number of tissue
specimens (Alfredson et al., 2003; Corps et al.,
2004). This serves to highlight inherent drawbacks
of the technique, which requires relatively large
amounts of RNA and is expensive, and is often
used to compare a relatively small number of speci-
mens.
Recently, we have investigated the expression of

several matrix and enzyme genes in human Achilles
tendon specimens using real time semi-quantitative

RT-PCR. We obtained macroscopically normal ten-
dons (n5 14) from cadavers and tissue specimens
obtained during surgery. The surgical specimens
were either from patients with a history of chronic
pain (n5 10), or had suffered an acute tendon
rupture (n5 8). All specimens were obtained after
informed consent and with the approval of the
Cambridge Local Research Ethical Committee. RT-
PCR analysis of two collagen genes (COL1A1 and
COL3A1) showed relatively high but variable levels
of expression in normal tendon, and significantly
increased expression of both genes in painful tendi-
nopathy (Riley GP, unpublished observations).
These findings are consistent with biochemical ana-
lyses, which showed changes in collagen synthesis
prior to tendon rupture (Eriksen et al., 2002). An
analysis of versican mRNA, the major hyalectan
found in tendon (see above), showed that two splice
variants (V0 and V1) were most abundant, and there
was a significant decrease in versican mRNA in both
painful and ruptured tendons (Corps et al., 2004). Of
the MMP genes that have been investigated to date,
there was little detectable expression of MMP-1 and
MMP-13 in any of the specimens, whether normal
or degenerate (Riley GP, unpublished observations).
Since both these collagenases are stimulated by
inflammatory cytokines, this observation is consis-
tent with the non-inflammatory nature of the lesion.
There was a small but significant reduction in MMP-
2 mRNA, but the most dramatic change was in the
level of MMP-3 mRNA, which was substantially
lower in painful and ruptured tendons. This study
confirmed earlier observations made using cDNA
arrays and biochemical analysis, which suggested
that MMP-3 was potentially important for the main-
tenance of the normal tendon matrix (Ireland et al.,
2001). However the substrate for MMP-3 in tendon
has not been identified, and since most of the enzyme
is in the inactive pro-form, the physiological rele-
vance is uncertain. Finally, an analysis of the expres-
sion of three aggrecanases, ADAMTS-1, ADAMTS-
4 and ADAMTS-5, showed expression of all three
enzymes in the tissue specimens (Riley GP, unpub-
lished observations). When expressed relative to
the housekeeping gene GAPDH, there was found
to be no significant change in ADAMTS-4, although
ADAMTS-1 was reduced in ruptured tendon and
ADAMTS-5 was reduced in both painful and rup-
tured tendons (unpublished). These observations
require confirmation and their potential significance
is uncertain, but it is possible to speculate that a
reduction in aggrecanase expression may underlie the
increase in proteoglycan found in degenerate tendon.
There are several caveats that must be taken into

consideration in any study of gene expression in
surgical and post-mortem tissues. Levels of gene
expression may not correlate with levels of protein
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expression or enzyme activity. This is particularly
relevant with respect to the MMP, which are regu-
lated at multiple levels and not just at the level of
synthesis. The analysis of small biopsies may not be
representative of the whole tendon, which generally
shows highly focal changes in cellularity and matrix
organization. The specimens are homogenized, and
expression may be localized at specific sites within the
tendon. The tendon specimens were also obtained
from a heterogeneous group of patients, varying
widely in several parameters such as age, levels of
physical activity and the duration of disease. The
analysis also provides only a ‘‘snap-shot’’ of cell
activity, representing only the time of sampling,
and changes in gene expression may be relatively
transient. Finally, surgery, drug treatment, tissue
storage and post-mortem changes can all profoundly
affect the levels of expression in the tissue specimens,
as well as reduce the quality of mRNA. With these
caveats in mind, analyses of gene expression are able
to provide some insight into the metabolic activity of
human tendon, and will provide an important ad-
junct to biochemical techniques.

Perspectives

The evidence presented suggests that tenocytes are
actively synthesizing and degrading the matrix in
normal tendon, and that these activities are substan-
tially altered in tendinopathy. Some matrix turnover
is beneficial for the health of the tendon, a contention

that is supported by the observation that drugs which
affect the expression or activity of MMP, such as
broad-spectrum MMP inhibitors and fluoroquino-
lone antibiotics, can induce tendon lesions in patients
being treated for other conditions (Pierfitte & Royer,
1996; Brown, 1999; Corps et al., 2002). A large
number of enzymes are potentially implicated in
this process, since there are at least 23 MMPs and
19 ADAMTS enzymes, and studies to date have
focused on relatively few of these. Some of these
enzymes are likely to be required for normal tendon
maintenance or repair, whilst others may be dama-
ging to the tendon and responsible for matrix de-
generation. Consequently it is important that the
complete profile of enzyme expression and activity
in human tendon is characterized, so that specific
targets for future drug therapy can be identified.

Key words: matrix metalloproteinase, MMP, aggreca-
nase, ADAMTS.
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Jarvinen M, Józsa L, Kannus P, Jarvinen
TLN, Kvist M, Leadbetter W.
Histopathological findings in chronic
tendon disorders. Scand J Med Sci
Sports 1997: 7(2): 86–95.
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