316 research outputs found
Does input trade liberalization boost downstream firms’ exports? Theory and firm-level evidence
We analyze the impact of input tariffs on the export status and export performance of heterogeneous processing firms. Using a theoretical model with downstream firms exhibiting different levels of productivity, we show that lower input tariffs may increase the export sales of high-productivity firms at the expense of low-productivity firms and may decrease the probability of firms entering foreign markets. We compare the predictions of the theoretical model with firm-level data from the French agrifood sector by developing a two-stage estimation procedure that uses an equation for selection into export markets in the first stage and an exports equation in the second stage. The liberalization of agricultural trade appears to favor the reallocation of market share from low- to high-productivity agrifood firms. In addition, our results suggest that, whether lower input tariffs increase total exports sales (and jobs), a large fraction of the least productive exporting firms may lose from an additional decrease in agricultural input tariffs
Memory effects in classical and quantum mean-field disordered models
We apply the Kovacs experimental protocol to classical and quantum p-spin
models. We show that these models have memory effects as those observed
experimentally in super-cooled polymer melts. We discuss our results in
connection to other classical models that capture memory effects. We propose
that a similar protocol applied to quantum glassy systems might be useful to
understand their dynamics.Comment: 24 pages, 12 figure
Static properties of the dissipative random quantum Ising ferromagnetic chain
We study the zero temperature static properties of dissipative ensembles of
quantum Ising spins arranged on periodic one dimensional finite clusters and on
an infinite chain. The spins interact ferro-magnetically with nearest-neighbour
pure and random couplings. They are subject to a transverse field and coupled
to an Ohmic bath of quantum harmonic oscillators. We analyze the coupled system
using Monte Carlo simulations of the classical two-dimensional counterpart
model. The coupling to the bath enhances the extent of the ordered phase, as
found in mean-field spin-glasses. In the case of finite clusters we show that a
generalization of the Caldeira-Leggett localization transition exists. In the
case of the infinite random chain we study the effect of dissipation on the
transition and the Griffiths phase.Comment: 21 pages, 10 figure
Effects of dissipation on disordered quantum spin models
We study the effects of the coupling to an Ohmic quantum reservoir on the
static and dynamical properties of a family of disordered SU(2) spin models in
a transverse magnetic field using a method of direct spin summation. The
tendency to form a glassy phase increases with the strength of the coupling of
the system to the environment. We study the influence of the environment on the
features of the phase diagram of the various models as well as the stability of
the possible phases.Comment: 24 pages, 8 fig
Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA
Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear
astrophysics are performed at the LUNA (Laboratory for Underground Nuclear
Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso
laboratory. By virtue of a specially constructed passive shield, the laboratory
gamma-ray background for E_\gamma < 3 MeV at LUNA has been reduced to levels
comparable to those experienced in dedicated offline underground gamma-counting
setups. The gamma-ray background induced by an incident alpha-beam has been
studied. The data are used to evaluate the feasibility of sensitive in-beam
experiments at LUNA and, by extension, at similar proposed facilities.Comment: accepted, Eur. Phys. J.
Solar axion search with the CAST experiment
The CAST (CERN Axion Solar Telescope) experiment is searching for solar
axions by their conversion into photons inside the magnet pipe of an LHC
dipole. The analysis of the data recorded during the first phase of the
experiment with vacuum in the magnet pipes has resulted in the most restrictive
experimental limit on the coupling constant of axions to photons. In the second
phase, CAST is operating with a buffer gas inside the magnet pipes in order to
extent the sensitivity of the experiment to higher axion masses. We will
present the first results on the data taking as well as the
system upgrades that have been operated in the last year in order to adapt the
experiment for the data taking. Expected sensitivities on the
coupling constant of axions to photons will be given for the recent run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc
Search for low Energy solar Axions with CAST
We have started the development of a detector system, sensitive to single
photons in the eV energy range, to be suitably coupled to one of the CAST
magnet ports. This system should open to CAST a window on possible detection of
low energy Axion Like Particles emitted by the sun. Preliminary tests have
involved a cooled photomultiplier tube coupled to the CAST magnet via a
Galileian telescope and a switched 40 m long optical fiber. This system has
reached the limit background level of the detector alone in ideal conditions,
and two solar tracking runs have been performed with it at CAST. Such a
measurement has never been done before with an axion helioscope. We will
present results from these runs and briefly discuss future detector
developments.Comment: Paper submitted to the proceedings of the "4th Patras Workshop on
Axions, WIMPs and WISPs", DESY, Hamburg Site - Germany, 18-21 June 2008.
Author affiliations are reported on the title page of the paper. In version
2: 1 affiliation change, 3 references adde
Dissipative effects on quantum glassy systems
We discuss the behavior of a quantum glassy system coupled to a bath of
quantum oscillators. We show that the system localizes in the absence of
interactions when coupled to a subOhmic bath. When interactions are switched on
localization disappears and the system undergoes a phase transition towards a
glassy phase. We show that the position of the critical line separating the
disordered and the ordered phases strongly depends on the coupling to the bath.
For a given type of bath, the ordered glassy phase is favored by a stronger
coupling. Ohmic, subOhmic and superOhmic baths lead to different transition
lines. We draw our conclusions from the analysis of the partition function
using the replicated imaginary-time formalism and from the study of the
real-time dynamics of the coupled system using the Schwinger-Keldysh closed
time-path formalism.Comment: 39 pages, 13 figures, RevTe
Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria
Tuberculosis is caused by Mycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways—e.g., cholesterol assimilation—that are critical for persistence and for pathogenesis of M. tuberculosis. In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential for M. tuberculosisin vitro growth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.Mycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in many Actinobacteria. Mycobacterium tuberculosis assimilates cholesterol during chronic infection, and its in vitro growth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA, mftB, mftC, mftD, mftE, and mftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed in Mycobacterium smegmatis, M. marinum, and M. tuberculosis. We found that the growth deficit of mft deletion mutants in medium containing cholesterol—a phenotypic basis for gene essentiality prediction—depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases, MSMEG_6242 was indispensable for M. smegmatis ethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation in M. tuberculosis. During ethanol treatment, mftC mutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters in mftC mutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems
Results and perspectives of the solar axion search with the CAST experiment
The status of the solar axion search with the CERN Axion Solar Telescope
(CAST) will be presented. Recent results obtained by the use of He as a
buffer gas has allowed us to extend our sensitivity to higher axion masses than
our previous measurements with He. With about 1 h of data taking at each of
252 different pressure settings we have scanned the axion mass range 0.39 eV 0.64 eV. From the absence of an excess of x rays when the
magnet was pointing to the Sun we set a typical upper limit on the axion-photon
coupling of g GeV at 95% C.L., the
exact value depending on the pressure setting. CAST published results represent
the best experimental limit on the photon couplings to axions and other similar
exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the
considered mass range and for the first time the limit enters the region
favored by QCD axion models. Preliminary sensitivities for axion masses up to
1.16 eV will also be shown reaching mean upper limits on the axion-photon
coupling of g GeV at 95% C.L.
Expected sensibilities for the extension of the CAST program up to 2014 will be
presented. Moreover long term options for a new helioscope experiment will be
evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres
de Blois V2 A few affiliations were not corrected in previous version V3
Author adde
- …
