16 research outputs found
Dogs as a source of Salmonella spp. in apparently healthy dogs in the Valencia Region. Could it be related with intestinal lactic acid bacteria?
Altres ajuts: Banco Santander (ES), FUSPBS-PPC 15/2016Although salmonellosis is considered one of the most important food-borne zoonotic diseases in Europe, close contact between dogs and their owners can also be a potential source of Salmonella spp. for humans. This study assessed the prevalence and antimicrobial resistance of Salmonella spp. in apparently healthy dogs in the Valencian Region, eastern Spain. Moreover, a macroscopic comparison of lactic acid bacteria in both Salmonella -positive and Salmonella -negative dogs was carried out. Of a total of 325 dogs sampled, 6 (1.85%) were positive for Salmonella spp. with 3 different serotypes, Havana (3), Mikawasima (2) and monophasic Typhimurium (1). All isolates were susceptible to all antimicrobials tested except monophasic S. Typhimurium, which was resistant to ampicillin. Finally, macroscopic results revealed that lactic acid bacteria had higher heterogeneity in the Salmonella -negative dogs than in the Salmonella -positive dogs. Although the results in our study showed a low prevalence of Salmonella spp., raw food has been suggested as a risk factor for bacteria in dog faeces. Public awareness campaigns on good hygiene practices, especially after handling canine faeces or raw food, are necessary. Furthermore, to reduce the potential transmission of bacteria, dogs should be fed food that has been properly cooked, as raw or undercooked food can be a source of zoonotic pathogens. Moreover, further studies must be performed to determine the relationship between lactic acid bacteria and Salmonella spp. in dog faeces
Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions
Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit. © 2012 Naturil-Alfonso et al.This work was supported by Generalitat Valenciana research programme (Prometeo 2009/125). Carmen Naturil was supported by Generalitat Valenciana research programme (Prometeo 2009/125). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Naturil Alfonso, C.; Saenz De Juano Ribes, MDLD.; Peñaranda, D.; Vicente Antón, JS.; Marco Jiménez, F. (2012). Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS ONE. 7(12):1-11. https://doi.org/10.1371/journal.pone.0051271S111712Harness, J. V., Turovets, N. A., Seiler, M. J., Nistor, G., Altun, G., Agapova, L. S., … Keirstead, H. S. (2011). Equivalence of Conventionally-Derived and Parthenote-Derived Human Embryonic Stem Cells. PLoS ONE, 6(1), e14499. doi:10.1371/journal.pone.0014499Lu, Z., Zhu, W., Yu, Y., Jin, D., Guan, Y., Yao, R., … Zhou, Q. (2010). Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. Journal of Assisted Reproduction and Genetics, 27(6), 285-291. doi:10.1007/s10815-010-9408-5Koh, C. J., Delo, D. M., Lee, J. W., Siddiqui, M. M., Lanza, R. P., Soker, S., … Atala, A. (2009). Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods, 47(2), 90-97. doi:10.1016/j.ymeth.2008.08.002Vrana, K. E., Hipp, J. D., Goss, A. M., McCool, B. A., Riddle, D. R., Walker, S. J., … Cibelli, J. B. (2003). Nonhuman primate parthenogenetic stem cells. Proceedings of the National Academy of Sciences, 100(Supplement 1), 11911-11916. doi:10.1073/pnas.2034195100Chen, Z., Liu, Z., Huang, J., Amano, T., Li, C., Cao, S., … Liu, L. (2009). Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells, 27(9), 2136-2145. doi:10.1002/stem.158Sritanaudomchai, H., Ma, H., Clepper, L., Gokhale, S., Bogan, R., Hennebold, J., … Mitalipov, S. (2010). Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Human Reproduction, 25(8), 1927-1941. doi:10.1093/humrep/deq144Fang, Z. F., Gai, H., Huang, Y. Z., Li, S. G., Chen, X. J., Shi, J. J., … Sheng, H. Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Experimental Cell Research, 312(18), 3669-3682. doi:10.1016/j.yexcr.2006.08.013Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., … Ji, W. (2007). Generation and Characterization of Rabbit Embryonic Stem Cells. Stem Cells, 25(2), 481-489. doi:10.1634/stemcells.2006-0226Piedrahita, J. A., Anderson, G. B., & BonDurant, R. H. (1990). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 34(5), 879-901. doi:10.1016/0093-691x(90)90559-cNaturil-Alfonso, C., Saenz-de-Juano, M. D., Peñaranda, D. S., Vicente, J. S., & Marco-Jiménez, F. (2011). Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Animal Reproduction Science, 127(3-4), 222-228. doi:10.1016/j.anireprosci.2011.08.005Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.xMehaisen, G. M. K., Viudes-de-Castro, M. P., Vicente, J. S., & Lavara, R. (2006). In vitro and in vivo viability of vitrified and non-vitrified embryos derived from eCG and FSH treatment in rabbit does. Theriogenology, 65(7), 1279-1291. doi:10.1016/j.theriogenology.2005.08.007Bilodeau-Goeseels, S., & Schultz, G. A. (1997). Changes in Ribosomal Ribonucleic Acid Content Within in Vitro-produced Bovine Embryos1. Biology of Reproduction, 56(5), 1323-1329. doi:10.1095/biolreprod56.5.1323Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207-210. doi:10.1093/nar/30.1.207Weltzien, F.-A., Pasqualini, C., Vernier, P., & Dufour, S. (2005). A quantitative real-time RT-PCR assay for European eel tyrosine hydroxylase. General and Comparative Endocrinology, 142(1-2), 134-142. doi:10.1016/j.ygcen.2004.12.019Llobat, L., Marco-Jiménez, F., Peñaranda, D., Saenz-de-Juano, M., & Vicente, J. (2011). Effect of Embryonic Genotype on Reference Gene Selection for RT-qPCR Normalization. Reproduction in Domestic Animals, 47(4), 629-634. doi:10.1111/j.1439-0531.2011.01934.xLiu, N., Enkemann, S. A., Liang, P., Hersmus, R., Zanazzi, C., Huang, J., … Liu, L. (2010). Genome-wide Gene Expression Profiling Reveals Aberrant MAPK and Wnt Signaling Pathways Associated with Early Parthenogenesis. Journal of Molecular Cell Biology, 2(6), 333-344. doi:10.1093/jmcb/mjq029Abdoon, A. S., Ghanem, N., Kandil, O. M., Gad, A., Schellander, K., & Tesfaye, D. (2012). cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology, 77(6), 1240-1251. doi:10.1016/j.theriogenology.2011.11.004Labrecque, R., & Sirard, M.-A. (2011). Gene expression analysis of bovine blastocysts produced by parthenogenic activation or fertilisation. Reproduction, Fertility and Development, 23(4), 591. doi:10.1071/rd10243Rizos, D., Clemente, M., Bermejo-Alvarez, P., de La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences ofIn VitroCulture Conditions on Embryo Development and Quality. Reproduction in Domestic Animals, 43, 44-50. doi:10.1111/j.1439-0531.2008.01230.xLonergan, P., Rizos, D., Kanka, J., Nemcova, L., Mbaye, A., Kingston, M., … Boland, M. (2003). Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality. Reproduction, 337-346. doi:10.1530/rep.0.1260337Memili, E., & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8(1), 87-96. doi:10.1017/s0967199400000861Latham, K. E. (2001). Embryonic genome activation. Frontiers in Bioscience, 6(3), d748-759. doi:10.2741/a639Niemann, H., & Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology, 53(1), 21-34. doi:10.1016/s0093-691x(99)00237-xCorcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., … Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction, 131(4), 651-660. doi:10.1530/rep.1.01015Morison, I. M., Ramsay, J. P., & Spencer, H. G. (2005). A census of mammalian imprinting. Trends in Genetics, 21(8), 457-465. doi:10.1016/j.tig.2005.06.008Bischoff, S. R., Tsai, S., Hardison, N., Motsinger-Reif, A. A., Freking, B. A., Nonneman, D., … Piedrahita, J. A. (2009). Characterization of Conserved and Nonconserved Imprinted Genes in Swine1. Biology of Reproduction, 81(5), 906-920. doi:10.1095/biolreprod.109.078139Cruz-Correa, M., Zhao, R., Oveido, M., Bernabe, R. D., Lacourt, M., Cardona, A., … Giardiello, F. M. (2009). Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene. Epigenetics, 4(2), 114-118. doi:10.4161/epi.4.2.7954Park, C.-H., Uh, K.-J., Mulligan, B. P., Jeung, E.-B., Hyun, S.-H., Shin, T., … Lee, C.-K. (2011). Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos. PLoS ONE, 6(7), e22216. doi:10.1371/journal.pone.0022216Thurston, A., Taylor, J., Gardner, J., Sinclair, K. D., & Young, L. E. (2007). Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Reproduction, 135(1), 29-40. doi:10.1530/rep-07-0211Li, Y., & Sasaki, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Research, 21(3), 466-473. doi:10.1038/cr.2011.15Mamo, S., Gal, A., Polgar, Z., & Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Molecular Biology, 9(1), 67. doi:10.1186/1471-2199-9-67Navarrete Santos, A., Tonack, S., Kirstein, M., Pantaleon, M., Kaye, P., & Fischer, B. (2004). Insulin acts via mitogen-activated protein kinase phosphorylation in rabbit blastocysts. Reproduction, 128(5), 517-526. doi:10.1530/rep.1.0020
Gestational losses in a rabbit line selected for growth rate
Prenatal death can occur due to several genetic and environmental factors which alter normal embryo development, maternal environment to support normal fertilisation, development of embryos, placenta and foetus, or affect the necessary relationship between embryo and endometrium. The aim of this work was to study gestational losses and progesterone, 17 Ăź-estradiol and IGF I serum levels in a rabbit line selected for growth rate (paternal line). In this study, a maternal line well characterised in previous studies was used as a reference line. A total of 211 laparoscopies were carried out, and the number of corpora lutea and implanted embryos at 12 th days, total born and live born were recorded per female. To analyse the endocrine levels, blood serum was collected from 54 females with implanted embryos at 12 th and 24 th day of gestation (27 from each line). The paternal line showed the lowest ovulation frequency, number of implanted embryos, total born and live born (0.70, 11.3, 7.4, and 6.4 vs 0.86, 12.8, 11.1 and 10.6 for maternal line, respectively) and consequently, the highest implantation, gestational, foetal and perinatal losses (0.31, 0.60, 0.40, and 0.15, respectively). Progesterone serum levels at 12 th days of gestation were similar between lines; however, progesterone serum level at 24 th day of gestation was significantly lower in the paternal line (4.8 vs 8.2 ng/mL). Serum levels of 17Ăź-estradiol and IGF-I at 12 th days of gestation were different between lines (14.6 vs 26.5 pg/mL, 237 vs 149 ng/mL for paternal and maternal lines respectively). These higher gestational losses of the paternal line could be explained by differences in 17 Ăź-estradiol level at 12 th days of gestation and the possible effect on low progesterone serum levels at 24 th days of gestation. Further studies in steroid production and bioavailability have to be done during oestrus and pregnancy related with metabolic activity of this line. © 2012 Elsevier Inc.We are grateful to the Researcher Training Programme from Valencia Polytechnic University. This work was supported by the Spanish Research Project (CICYT AGL2008-03274). The authors thank Neil Macowan Language Services for revising the English version of the manuscript.Vicente AntĂłn, JS.; Llobat L; Viudes De Castro, MP.; Lavara GarcĂa, R.; Baselga Izquierdo, M.; Marco JimĂ©nez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology. 71(1):81-88. https://doi.org/10.1016/j.theriogenology.2011.07.019818871
Reappraisal of the clinical pharmacology of low-dose aspirin by comparing novel direct and traditional indirect biomarkers of drug action
Even though the acetylation of platelet cyclooxygenase (COX)-1 at serine-529 is the direct mechanism of action of low-dose aspirin, its antiplatelet effect has been characterized using indirect indexes of COX-1 activity
Procjena unosa bakra umjerenom konzumacijom vina
To estimate Cu exposure level from wine consumption and to assess possible health risk for moderate wine consumers, wine samples were collected from different wine-growing areas of Croatia. Median
concentrations were 180 ÎĽg L-1, range (76 to 292) ÎĽg L-1, in commercial wines and 258 ÎĽg L-1, range (115 to 7600) ÎĽg L-1, in homemade wines (P>0.05). Maximum permitted level of 1000 ÎĽg L-1 was exceeded in three homemade wines. However, daily intake of Cu from wine (in the range from 0.02 mg d-1 to 1.52 mg d-1) estimated from Cu concentration in all wine samples is lower than the tolerable upper intake level of 5 mg d-1 proposed by the EU Scientifi c Committee on Food and does not present a risk to moderate wine
consumers.Kako bi se procijenila razina izloženosti bakru prilikom konzumacije vina te utvrdili mogući zdravstveni rizici za umjerene potrošače vina, skupljeni su i ispitani uzorci vina iz različitih vinogradarskih područja Hrvatske. Koncentracije Cu bile su u rasponu od 76 μg L-1 do 292 μg L-1 (medijan 180 μg L-1) u komercijalnim vinima te od 115 μg L-1 do 7.600 μg L-1 (medijan 258 μg L-1) u vinima domaće proizvodnje
(P>0,05). U tri ispitana vina domaće proizvodnje koncentracija Cu bila je iznad najviše dopuštene od 1000 μg L-1. Međutim, izračunani dnevni unos Cu u slučaju konzumacije ispitanih vina (u rasponu od
0,02 mg d-1 do 1,52 mg d-1) ne prelazi gornju granicu tolerancije unosa od 5 mg d-1 te nije zdravstveni rizik umjerenim potrošačima vina