124 research outputs found

    T-2 toksin - pojavnost i toksičnost u peradi

    Get PDF
    T-2 toxin is the most toxic type A trichothecene mycotoxin. It is the secondary metabolite of the Fusarium fungi, and is common in grain and animal feed. Toxic effects have been shown both in experimental animals and in livestock. It has been implicated in several outbreaks of human mycotoxicoses. Toxic effects in poultry include inhibition of protein, DNA, and RNA synthesis, cytotoxicity, immunomodulation, cell lesions in the digestive tract, organs and skin, neural disturbances and low performance in poultry production (decreased weight gain, egg production, and hatchability). Concentrations of T-2 toxin in feed are usually low, and its immunosuppressive effects and secondary infections often make diagnosis difficult. If at the onset of the disease, a change in diet leads to health and performance improvements in animals, this may point to mycotoxin poisoning. Regular control of grain and feed samples is a valuable preventive measure, and it is accurate only if representative samples are tested. This article reviews the incidence and toxic effects of T-2 toxin in poultry.T-2 toksin je najtoksičniji predstavnik trikotecenskih mikotoksina tipa A. On je sekundarni produkt metabolizma plijesni roda Fusarium i često je prisutan u žitaricama i hrani za životinje. Štetni učinci uočeni su u eksperimentalnih životinja i životinja u uzgoju. On se povezuje s pojavom bolesti ljudi od mikotoksikoza. Učinci toksina u peradi su višestruki: inhibicija sinteze proteina, DNA i RNA, citotoksični učinak, imunomodulatorni učinak, oštećenje stanica probavnog sustava, organa i kože, živčani poremećaji te pad proizvodnih karakteristika u uzgoju peradi (slabiji prirast, pad nesivosti i valivosti). Koncentracije T-2 toksina u hrani redovito su vrlo malene, a zbog imunosupresivnog djelovanja toksina te istodobne sekundarne infekcije bolest se često teško dijagnosticira. Pri pojavi bolesti promjenom hrane može doći do poboljšanja zdravstvenog stanja, što tako|er upućuje na moguće trovanje mikotoksinima. Redovita kontrola uzoraka žitarica i hrane za životinje jedna je od preventivnih mjera, a detekcija mikotoksina u žitaricama i hrani pouzdana je samo ako se ispituje reprezentativan uzorak. U radu su opisani učestalost i toksični učinci T-2 toksina u peradi

    Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms

    Get PDF
    Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging

    On the calculation of the effects of roundoff errors

    No full text

    A Comparative Evaluation of the Italian Experience

    No full text

    Reverse accumulation and accurate rounding error estimates for taylor series coefficient

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t713645924~db=all Copyright Taylor and Francis/ Informa.We begin by extending the technique of reverse accumulation so as to obtain gradients of univariate Taylor series coefficients. This is done by re-interpreting the same formulae used to reverse accumulategradients in the conventional (scalar) case. Thus a carefully written implementation of conventional reverse accumulation can be extended to the Taylor series valued case by (further) overloading of the appropriate operators. Next, we show how to use this extended reverse accumulation technique so as to construct accurate (i.e. rigorous and sharp) error bounds for the numerical values of the Taylor series coefficients of the target function, again by re-interpreting the corresponding conventional (scalar) formulae. This extension can also be implemented simply by re-engineering existing code. The two techniques (reverse accumulation of gradients and accurate error estimates) each require only a small multiple of the processing time required to compute the underlying Taylor series coefficients. Space "requirements are comparable to those for conventional (scalar) reverse accumulation, and can be simply managed. We concluded with a discussion of possible implementation strategies and the implications for the re-use of code.Peer reviewe
    corecore