1,045 research outputs found

    Alien Registration- Levasseur, Marie L. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/29043/thumbnail.jp

    The Affective Disturbance of Ethanol Withdrawal on C57BL/6J and C57BL/6NJ Mice

    Get PDF
    The C57BL/6 (B6) mouse is the most commonly used inbred mouse strain in biomedical research. While the B6 mouse originated at The Jackson Laboratory, a number of separate breeding colonies are now maintained at various sites, resulting in genetic drift that has led to the emergence of both genotypic and phenotypic differences among these colonies. Two distinct substrains of B6 mice, C57BL/6J (B6J) and C57BL/6NJ (B6N), have been shown to differ on several addiction-related phenotypes, such as ethanol preference and locomotor responses to psychostimulants. Therefore, the aim of this study was to assess possible differences in depression- and anxiety-like behaviors following ethanol withdrawal between B6J and B6N mice. Male and female mice (n = 78) were exposed to a regimen of chronic-intermittent ethanol vapor or plain air and subsequently subjected to several behavioral tests at weekly intervals for four weeks. Behavioral measures included the Sucrose Preference Test, a well-established test for depression-like anhedonia; the Light-Dark box Test, a commonly used index of anxiety-like behavior; and the Forced Swim Test, a standard assessment for depression-like learned helplessness. For the Forced Swim Test, the results showed strain main effect between the J’s and the N’s that the J’s spent more time immobile than the N’s did. There was also a sex by strain by condition effect in the Sucrose Preference Test where the female N Ethanol mice consumed significantly less Sucrose water than did their control counterparts. From this we can conclude that there are significant behavioral effects associated with Ethanol withdrawal across B6J and B6N mice

    Tidal currents, winds and the morphology of phytoplankton spatial structures

    Get PDF
    Chlorophyll a, nutrients and salinity distributions were studied at two spatial scales (10 cm and 0.25 to 2.5 km) in the St. Lawrence Estuary (Quebec, Canada), in order to investigate the role of tidal currents and winds in the formation and maintenance of spatial structures. Data were collected according to a synoptic sampling pattern using three sampling platforms simultaneously, and they were analyzed using analysis of variance. The sampling pattern was repeated on four occasions during July 1980.Analyses of variance indicated significant spatial heterogeneities of about the same magnitude at the two scales studied for chlorophyll and nutrients, whereas salinity showed only large–scale variability. At the kilometer scale, the frequency distribution spectra of patch length for chlorophyll showed the existence of patches of various dimensions between 0.2 and 6.0 km with a dominance of small patches (≤0.5 km). Frequency maxima were usually observed at the smaller (≤0.5 km) and larger (≥2.0 km) scales for the nutrients and only at larger (≥2.0 km) scale for salinity. The distribution spectra of patch dimensions were characteristic for each sampling experiment, depending on tidal currents and prevailing wind conditions. Estimated patch dimensions were larger parallel to the current direction than perpendicular to current direction, implying that spatial structures are elongated in the sense of the current direction. Higher winds have, first, a tendency to increase the small–scale structure of the environment by breaking up larger patches into smaller patches, before structures are completely eliminated. The implication of these findings is that different results could be obtained depending on the sampling strategy used (sampling either at anchor stations or at random, independent of current direction), which could lead to different conclusions

    Spectropolarimetry of the Deep Impact target comet 9P/Tempel 1 with HiVIS

    Get PDF
    High resolution spectropolarimetry of the Deep Impact target, comet 9P/ Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS Spectropolarimeter and the AEOS 3.67m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30%, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41 degrees beginning 8 minutes after impact and centered at 6:30UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950nm. This corresponds to a spectropolarimetric gradient, or slope, of -0.9% per 1000 Angstroms 40 minutes after impact, decreasing to a slope of -2.3% per 1000 Angstroms an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 hour after impact. The polarization values of 4% and 7% at 650nm are typical for comets at this scattering angle, whereas the low polarization of 2% and 3% at 950nm is not. We compare observations of comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30 degrees which showed a typical red slope, rising from 2% at 650nm to 3% at 950nm in two different observations (+1.0 and +0.9% per 1000 Angstroms).Comment: Icarus Deep Impact special issue, accepted Aug 28 200

    The Composition of Comets

    Full text link
    This paper is the result of the International Cometary Workshop, held in Toulouse, France in April 2014, where the participants came together to assess our knowledge of comets prior to the ESA Rosetta Mission. In this paper, we look at the composition of the gas and dust from the comae of comets. With the gas, we cover the various taxonomic studies that have broken comets into groups and compare what is seen at all wavelengths. We also discuss what has been learned from mass spectrometers during flybys. A few caveats for our interpretation are discussed. With dust, much of our information comes from flybys. They include {\it in situ} analyses as well as samples returned to Earth for laboratory measurements. Remote sensing IR observations and polarimetry are also discussed. For both gas and dust, we discuss what instruments the Rosetta spacecraft and Philae lander will bring to bear to improve our understanding of comet 67P/Churyumov-Gerasimenko as "ground-truth" for our previous comprehensive studies. Finally, we summarize some of the initial Rosetta Mission findings.Comment: To appear in Space Science Review

    Dynamical vs spectator models of (pseudo-)conformal Universe

    Full text link
    We discuss two versions of the conformal scenario for generating scalar cosmological perturbations: a spectator version with a scalar field conformally coupled to gravity and carrying negligible energy density, and a dynamical version with a scalar field minimally coupled to gravity and dominating the cosmological evolution. By making use of the Newtonian gauge, we show that (i) no UV strong coupling scale is generated below MPlM_{Pl} due to mixing with metric perturbations in the dynamical scenario, and (ii) the dynamical and spectator models yield identical results to the leading non-linear order. We argue that these results, which include potentially observable effects like statistical anisotropy and non-Gaussianity, are characteristic of the entire class of conformal models. As an example, we reproduce, within the dynamical scenario and working in comoving gauge, our earlier result on the statistical anisotropy, which was originally obtained within the spectator approach.Comment: 13 page

    Evolution of the Dust Coma in Comet 67P/Churyumov-Gerasimenko Before 2009 Perihelion

    Full text link
    Comet 67P/Churyumov-Gerasimenko is the main target of ESA's Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {\it Philae}, it is necessary necessary to know the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (\rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in pressComment: 5 pages, 4 figure
    • …
    corecore