978 research outputs found

    Maize dwarf mosaic virus in corn hybrids

    Get PDF

    Performance of corn hybrids under maize dwarf mosaic in Ohio in 1969

    Get PDF

    Tidal Response of Mars Constrained From Laboratory-Based Viscoelastic Dissipation Models and Geophysical Data

    Get PDF
    We employ laboratory-based grain-size- and temperature-sensitive rheological models to 16 describe the viscoelastic behavior of terrestrial bodies with focus on Mars. Shear modulus 17 reduction and attenuation related to viscoelastic relaxation occur as a result of diffusion- 18 and dislocation-related creep and grain-boundary processes. We consider five rheological 19 models, including extended Burgers, Andrade, Sundberg-Cooper, a power-law approxima- 20 tion, and Maxwell, and determine Martian tidal response. However, the question of which 21 model provides the most appropriate description of dissipation in planetary bodies, re- 22 mains an open issue. To examine this, crust and mantle models (density and elasticity) are 23 computed self-consistently through phase equilibrium calculations as a function of pres- 24 sure, temperature, and bulk composition, whereas core properties are based on an Fe-FeS 25 parameterisation. We assess the compatibility of the viscoelastic models by inverting the 26 available geophysical data for Mars (tidal response and mean density and moment of in- 27 ertia) for temperature, elastic, and attenuation structure. Our results show that although 28 all viscoelastic models are consistent with data, their predictions for the tidal response at 29 other periods and harmonic degrees are distinct. The results also show that Maxwell is 30 only capable of fitting data for unrealistically low viscosities. Our approach can be used 31 quantitatively to distinguish between the viscoelastic models from seismic and/or tidal ob- 32 servations that will allow for improved constraints on interior structure (e.g., with InSight). 33 Finally, the methodology presented here is generally formulated and applicable to other so- 34 lar and extra-solar system bodies where the study of tidal dissipation presents an important 35 means for determining interior structure

    Cognitive Behavioral Therapy for Insomnia in Alcohol‐Dependent Veterans: A Randomized, Controlled Pilot Study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149521/1/acer14030.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149521/2/acer14030-sup-0001-FigS1-S3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149521/3/acer14030_am.pd

    Viscoelasticplastic-Fracture modeling of asphalt mixtures under monotonic and repeated loads

    Get PDF
    Rutting and cracking occur simultaneously in asphalt mixtures as observed in the field and in the laboratory. Existing mechanical models have not properly addressed viscoelastic and viscoplastic deformation together with cracking attributable to model deficiencies, parameter calibration, and numerical inefficiency. This study developed viscoelasticplastic-fracture (VEPF) models for the characterization of viscoelasticity by Prony model and viscoplasticity by Perzyna's flow rule with a generalized Drucker-Prager yield surface and a nonassociated plastic potential. Viscofracture damage was modeled by a viscoelastic Griffith criterion and a pseudo J-integral Paris's law for crack initiation and propagation, respectively. The VEPF models were implemented in a finite element program by using a weak form partial differential equation modeling technique without the need for programming user-defined material subroutines. Model parameters were derived from fundamental material properties by using dynamic modulus, strength, and repeated load tests. Simulations indicated that the viscoelastic-viscoplastic-viscofracture characteristics were effectively modeled by the VEPF models for asphalt mixtures at different confinements and temperatures. An asphalt mixture under monotonic compressive loads exhibited a sequenced process including a pure viscoelastic deformation stage, a coupled viscoelastic-viscoplastic deformation stage, a viscoelastic-viscoplastic deformation coupled with a viscofracture initiation and a propagation stage, and then a viscoelastic-viscofracture rupture stage with saturated viscoplastic deformation. The asphalt mixture under repeated loads yielded an increasing viscoplastic strain at an increasing rate during the first half of the haversine load, while the increment of the viscoplastic strain (per load cycle) decreased with load cycles. The finite element program, which is based on a partial differential equation, effectively modeled the coupled viscoelastic-viscoplastic-viscofracture behaviors of the asphalt mixtures

    Governing migration from a distance: interactions between climate, migration and security in the South Mediterranean

    Get PDF
    Links between security and migration are well established and are associated with the meaning, status, and practice of borders in the international political system. This article assesses how and with what effects the effects of environmental and climate change have entered this relationship between migration and security. It does so by assessing the EU’s external governance of migration in “South Mediterranean Partner Countries” (SMPCs): Algeria, Egypt, Iraq, Israel, Jordan, Libya, Morocco, Palestine, Syria, and Tunisia. It is argued that a focus on promoting “adaptation” and building “resilience” has developed that is consistent with the logic of governing migration from a distance. However, the article challenges ideas that environmental/climate change act as simple migration “triggers” and instead explores implications of movement towards and not away from risk, as well as the potential for populations to be trapped in areas that expose them to risk. It is shown that both have important implications for the relationship between migration, environmental/climate change, and security in SMPCs

    Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions

    Get PDF
    Background: Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions. Methods: These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies. Results: Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level. Conclusions: These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible
    corecore