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ABSTRACT 
Rutting and cracking occur simultaneously in asphalt mixtures as observed in the field and 
laboratory. Existing mechanical models have not properly addressed viscoelastic and viscoplastic 
deformation together with cracking due to model deficiencies, parameter calibration and 
numerical inefficiency. This study develops viscoelastic-plastic-fracture (VEPF) models 
characterizing viscoelasticity (VE) by Prony model and viscoplasticity (VP) by Perzyna’s flow 
rule with a Generalized Drucker-Prager (GD-P) yield surface and a non-associated plastic 
potential. Viscofracture (VF) damage is modelled by a viscoelastic Griffith criterion and a 
pseudo J-integral Paris’ law for crack initiation and propagation, respectively. The VEPF models 
are implemented in a finite element (FE) program using a weak form partial differential equation 
(PDE) modeling technique with no need to program user-defined material subroutines. Model 
parameters were derived from fundamental material properties using dynamic modulus, strength 
and repeated load tests. Simulations indicate that the VE-VP-VF characteristics are effectively 
modelled by the VEPF models for different asphalt mixtures at different confinements and 
temperatures. An asphalt mixture under monotonic compressive loads exhibits a sequenced 
process including a pure VE deformation stage, a coupled VE-VP deformation stage, a VE-VP 
deformation coupled with VF initiation and propagation stage, and then a VE-VF rupture stage 
with saturated VP deformation. The asphalt mixture under repeated loads yields an increasing 
VP strain at an increasing rate during the first half of the haversine load while a decreasing VP 
strain increment with load cycles. The PDE-based FE is capable of effectively modeling the 
coupled VE-VP-VF behaviors of the asphalt mixtures.  
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INTRODUCTION 
Rutting and cracking in asphalt layers are two primary distresses in flexible pavements. Rutting 
occurs mainly at high temperatures (e.g., 35C and higher) and cracking occurs at ambient and 
low temperatures. However, some studies from field/laboratory observations and mechanical 
analyses indicate that, at high temperatures, cracks grow simultaneously with rutting under 
external compressive loadings, e.g., surface cracks in the wheel path rutting (1-3), overstress 
(after peak stress) degradation under a compressive monotonic load (4, 5), and the tertiary flow 
under a compressive repeated load (6, 7). Mechanical models such as viscoelastic-plastic 
continuum damage (VEPCD) models (8-11) and continuum damage mechanics (CDM) models 
(12-14) have been developed to couple viscoelastic (VE) and viscoplastic (VP) deformation with 
cracking damage. They have also been implemented in finite element (FE) modeling (e.g., 
Abaqus) by programming user-defined material subroutines to predict material performance.  

However, the coupling of deformation and cracking at a high temperature has not 
appropriately modelled by the existing models especially under a compressive load. This is due 
to that 1) yield surface was not used, e.g., VEPCD uses Schapery’s VP theory which implicitly 
assumes that plasticity occurs even at a very tiny load, which is not accurate for asphalt mixtures; 
or yield surface was used inappropriately, e.g., an asphalt mixture normally has a friction angle 
larger than 22, however the CDM models employ the extended Drucker-Prager model which is 
effectively applicable only for a material with a friction angle less than 22 (15); 2) the initiation 
of damage/cracking was not well defined, e.g., both assume that damage is initiated from the 
beginning of the load, which may be a reasonable assumption in tension and at low/intermediate 
temperatures but not in compression or at high temperatures. The cracks don’t grow in 
compression until the material has been hardened due to the accumulation of the VP deformation 
to a level that a viscoelastic Griffith energy criterion is satisfied (4); and 3) the FE simulations 
for both models require significant laboratory tests to calibrate model parameters and also need 
extensive experiences in programming material subroutines. More efforts are also needed to deal 
with computational problems, i.e., non-convergence, low-efficient iteration, and circular 
dependency.  

This paper aims to remove the above three limitations and model the coupling of the 
viscoelastic/viscoplastic deformation and cracking for asphalt mixtures under monotonic and 
repeated loads with a focus on compressive loading and high temperatures. A weak form partial 
differential equation (PDE) based FE method is used in numerical simulations to free researchers 
from computer programming and allow one to focus on constitutive modeling of the materials. 

 
CONSTITUTIVE MODELS FOR ASPHALT MIXTURES 
With small deformation and no cracking damage assumed, the total strain of an asphalt mixture 
subjected to an external load is decomposed into viscoelastic and viscoplastic strains. 
 

ve vp
ij ij ij               (1) 

 
where ij = total strain tensor, ve

ij = viscoelastic strain tensor, and vp
ij = viscoplastic strain tensor.  

 
Linear Viscoelasticity (VE) 
Under multi-axial stress states, the isotropic constitutive relation for an undamaged linear 
viscoelastic material is expressed as (16): 
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where 11 22 33kk       = volumetric stress, 

11 22 33
ve ve ve ve
kk       = viscoelastic volumetric 

strain, K(t) = relaxation bulk modulus, 1 3ij ij kk ijs      = deviatoric stress tensor and 
i j  = the 

Kronecker delta, 1 3ve ve ve
ij ij kk ije      = viscoelastic deviatoric strain, G(t) = relaxation shear 

modulus, t = a current time of interest, and τ = an integration variable in time domain. If a solid-
like generalized Maxwell (Prony) model is used, the total stress becomes (17): 
 

   
1
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M

ve ve ve m vi ve m vi
ij kk ij ij m kk kk ij m ij ij

m
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where M = total number of the Maxwell elements. K∞ and G∞ = the long term equilibrium bulk 
modulus and shear modulus, respectively; Km and Gm are components of the relaxation bulk and 

shear moduli, respectively; m vi
kk   and 

m vi
ije 

are the viscous bulk and deviatoric strains caused by 

the m-th dashpot (m = 1,2,…, M) in the generalized Maxwell model, which are solved by: 
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where τm = relaxation time for the m-th dashpot at a reference temperature, and aT = time-
temperature shift factor for the modulus, that can be modelled by Arrhenius function as below: 
 

  1 1
expT

r

E
a T

R T T

  
   

  
         (5) 

 
where ΔE = activation energy for temperature effect on modulus, R = gas constant, 8.314 
J/(K·mol). T = temperature of interest, Tr = reference temperature. 
 
Viscoplasticity (VP) 
The viscoplastic strain is associated with irrecoverable permanent deformation of the material 
and its evolution can be defined by a Perzyna-type viscoplasticity theory as (18): 
 

  Nvp
ij

ij

g
f




 


          (6) 

 

where 
vp
ij  = rate of the viscoplastic strain with respect to time; Γ = a viscosity related parameter. 

N = a viscoplastic rate dependent exponent. Both Γ and N are experimentally determined and N 
>1 for the asphalt mixtures. f = a viscoplastic yield surface function.  g = a viscoplastic plastic 
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potential function. The non-associated flow rule applies that g f , which is appropriate for 
shearing dilated geo-materials such as asphalt mixtures. The McCauley brackets imply that: 
 

    0, 0, 1f if f f Pa             (7) 

 
The Perzyna-type model in Eq. 6 has been used to describe asphalt mixture’s viscoplastic 

evolution for decades (19-24). However, most used a yield surface like Mohr-Coulomb, 
Drucker-Prager (D-P) or extended D-P models which have some significant limitations such as 
non-smooth or non-convex surfaces when internal frictional angle is greater than 22°. To remove 
these limitations, the author has developed a generalized Drucker-Prager (GD-P) yield surface 
model as shown in Equations 8 to 12 (15, 25), allowing a smooth and convex surface for 
frictional angles varying from zero to 90°. 

 

 2 1 kf J I a a              (8) 

 
where J2 = 1/2sijsij = the second invariant of the deviatoric stress tensor; I1 = σkk. θ' = the Lode 
angle that is defined as: 
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      (9) 

 
where J3 = det(sij) = the third invariant of the deviatoric stress tensor. θ' = zero in compression 
and 3  in extension. ρ(θ') = a function defining the yield surface shape on octahedral plane and 
determines the convexity of the yield surface, which is expressed as: 
 

   1
3cos arccos cos3                (10) 

 
where μ and γ = size and shape parameters, respectively, for the yield surface on the octahedral 
plane to ensure that the yield surface is smooth and convex, which are related to fundamental 
material properties (e.g., friction angle) by below relations: 
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2 3 sin3 1
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d

d d d
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   (11) 

 
where d = an extension ratio that is the ratio of the yield strength in extension to that in 
compression. ϕ = internal friction angle of the asphalt mixture, which also directly determines 
the slope of the yield surface on meridian plane by: 
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3 3 sin
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         (12) 
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The term κakaε in the GD-P model represents the temperature- and rate-dependent 
cohesion and strain hardening for the asphalt mixture. κ = a strain hardening function; ak and aε 
are temperature and strain-rate effect factors, and they are defined as: 

 

 0 1 21 exp vp
e                 (13) 

 

  1 1
exp k

k
r

E
a T

R T T

  
   

  
        (14) 

 

    3
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
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where κ0 is a parameter determined by material cohesion (C) and internal friction angle (ϕ): 
 

 0

6 cos

3 3 sin

C 





         (16) 

 
where κ1 and κ2 = the material parameters identified at the reference temperature (Tr) and a 
reference strain-rate ( ). They determine the size and shape of the strain hardening yield 
surface, respectively. ΔEk = the activation energy for the temperature effect on cohesion,  = a 
strain rate of interest, and κ3 = a material property accounting for the effect of strain-rate on 
cohesion. amin and amax are theoretical minimum and maximum strain-rate effect factors. εe

vp = an 
effective viscoplastic strain under multi-axle stress loadings, that is derived as (25): 
 

1
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where β = the slope of the viscoplastic potential surface. Integrating Eq.17 over time gives the 
effective viscoplastic strain. The viscoplastic potential function (g) determines the direction of 
the viscoplastic strain increment. It is assumed that the viscoplastic potential surface has the 
same linear form as the yield surface but with a smaller slope which affects the volumetric 
dilation of the material: 
 

 2 1g J I             (18) 

 
A number of studies have indicated that β < α is valid for geo-materials such as soils, 

sands, and asphalt mixtures (22, 26). β is derived to be a function of anisotropy: 
 

0.5889 0.0122            (19) 
 
where Δ' = modified vector magnitude for microstructural anisotropy of the asphalt mixture that 
has a value from 0.2 to 0.5 and can be experimentally determined (27).  
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Viscofracture (VF) 
Once a material is damaged, the load applied on the material is transferred or carried out by the 
remaining undamaged (effective or intact) material. It is argued that an effective stress acting on 
the intact material drives the viscoelastic and viscoplastic deformation (28, 29). Thus the 
aforementioned VE and VP constitutive equations are valid only in the effective (undamaged) 
configuration and the stresses (σij) used in these models should be the effective stresses. 
However, the stresses measured on the damaged/cracked material in the laboratory or field are 
apparent stresses (σA

ij) that are affected by cracking damage, and the apparent modulus also 
degrades with crack evolution. Thus the effective stresses need to be related to the apparent 
stresses by the damage characteristics. Based on continuum damage mechanics (CDM) (28, 30), 
a damage density is defined as below to capture the overall fracture properties and relate the 
apparent responses to the effective responses and material properties. 
 

c TA A            (20) 
 
where, ξ = damage density, Ac = lost area due to damages such as voids, flaws and cracks and AT 
= total cross-sectional area of the material. According to the CDM theories, two equilibrium 
principles (i.e., force and energy) and isotropic damage are hypothesized between the 
undamaged (effective) configuration and the damaged (apparent) configuration, leading to: 
 

 1A
ij ij             (21) 

 

 1A
ij ij              (22) 

 
where σij and εij = effective stress and strain defined in the effective configuration; σA

ij and εA
ij = 

apparent stress and strain defined in the apparent configuration and measured in the laboratory.  
The crack (damage) initiation criterion is proposed by the authors (4) and defined by the 

viscoelastic Griffith theory, i.e., cracks will grow when the below energy equation is satisfied: 
 
1 7

2 6

G
RPSE DPSE

c
           (23) 

 
where RPSE = (σ11

2+ σ22
2 + σ33

2)/(2ER) + 2(1+υR)(σ12
2+ σ23

2 + σ13
2)/ER = recoverable pseudo-

strain energy (density), ER, and υR = reference modulus and Poisson’s ratio which are derived to 
be Young’s modulus and elastic Poisson’s ratio (31). DPSE = dissipated pseudo-strain energy 

(density) due to the accumulation of the viscoplastic deformation, and . c = 
average air void radius that is also the critical crack size at which crack starts to grow. Based on 
the work by Zhang et al., c can be calculated by Equation 24 with R2 = 0.7431 (4): 
 

   2
0.0037 % 0.0071 % 0.5583c AV AV         (24) 

 
where %AV = air void content of asphalt mixture in percentage. ΔG = bond energy of the asphalt 
mixture, which represents a combined bond energy for cohesive fracture and adhesive fracture. 
A higher temperature or a lower loading rate induces more percentage of cohesive fracture and 
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therefore leads to a lower bond energy (4). The temperature and rate dependent bond energy for 
an asphalt mixture is modelled as: 
 

       G rG T a T a G T            (25) 
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  .15a Eq            (27) 

 
where aG = temperature shift factor for bond energy; ΔEG = activation energy for temperature 
effect on bond energy. aε = a factor accounting for the strain rate effect on the bond energy 
which is assumed to have the same formulation as the strain rate effect factor on the material 
cohesion. The crack damage evolution in below was developed based on a pseudo J-integral 
Paris’ law (5). Note the pseudo J-integral Paris’ law has been successfully used to model fatigue 
cracking of asphalt mixtures (32, 33) as well as the fracture properties of field-aged mixtures 
(34) and warm mix (35): 
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d H
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
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where  = rate of damage density; A and n = Paris’ law coefficients that are demonstrated to be 
independent of loading mode, rate, and temperature (5); ΔJR = pseudo J-integral per loading step; 
H = height of a laboratory sample or thickness of an asphalt layer in the pavement. It’s noted that 
Eq. 23 and Eq. 28 are for crack initiation and propagation modeling of asphalt mixture in 
compression. Similar models based on the same principles (i.e., viscoelastic Griffith criterion and 
pseudo J-integral Paris law) have been derived for those in tension which will be employed in the 
future studies.  
 
A Viscoelastic-Plastic-Fracture (VEPF) Constitutive Model 
An apparent (damaged) constitutive relation is formulated between apparent stress and apparent 
strain by substituting Eqs. 1, 21 and 22 into Eq. 3: 
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  (29) 

 
where ξ = damage density by integrating Eq. 28 over time. A

kk  and A
ije  are bulk and deviatoric 

components of apparent total strain 
A
ij  that is determined as  , , 2A

ij i j j iu u   . vpA
kk  and 

vpA
ije  

are bulk and deviatoric components of apparent viscoplastic strain 
vpA
ij  that is defined as 
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 1vpA vp
ij ij    , and 

vp
ij  is an integration of Eq. 6 over time. m vi

kk   and 
m vi
ije 

 are bulk and 

deviatoric components of the effective (undamaged) viscous strain caused by the m-th dashpot 

and they are solved using Eq.4 by setting   1ve A vpA
kk kk kk       and   1ve A vpA

ij ij ije e e    . 

NUMERICAL IMPLEMENTATION  
The viscoelastic constitutive equations (Eqs. 2, 3, and 4) have been successfully implemented in 
a weak form partial differential equation (PDE) based finite element (FE) modeling program, 
Comsol Multiphysics, and it demonstrates that accurate viscoelastic responses can be predicted.  
Moreover, unlike Abaqus, no material subroutine is needed for modelling user-defined 
constitutive relations (17). Following this work, the viscoplastic and viscofracture constitutive 
models are converted to Weak Expressions and coupled with viscoelastic PDE models and 
solved simultaneously using weak form PDE modeling. The key simulation steps are described 
as below. (A bold and italic expression represents a module or a defined variable in the Comsol 
program). 
 

(1) Define material properties in Parameters and Variables as model inputs. The Parameters 
are summarized in Table 1. The Variables include aT (Eq.5), f (Eq.8), κ (Eq.13), ak (Eq.14), aε 
(Eq.15), Ae (Eq.17), g (Eq.18), aG (Eq.26) and aε (Eq.27) which are functions of the Parameters. 

(2) Define Dependent Variables (DVs) in four separate Weak Form PDE modules. 
 
 VE: viscous volumetric strains ( m vi

kk   in Eq. 4a) defined as u1m, where m = 1, 2, ..., M. 

 VE: viscous deviatoric strains (
m vi
ije 

in Eq. 4b) defined as u2mij, ij = 11, 12, 23, 22, 23, 

33. 

 VP: viscoplastic strains (
vp
ij  in Eq. 6) defined as u3ij, where ij = 11, 12, 23, 22, 23, 33. 

 VF: damage density (ξ in Eq. 28) that is expressed as u4 in the program. 
 
In addition, global DVs have been defined in the Linear Elastic Material module that 

include displacement components in three directions, i.e., u, v, and w.   
(3) Convert VE, VP, and VF constitutive equations into Weak Expressions as below. 

Comsol will perform a numerical integration of the Weak Expressions over a volumetric region 
(e.g., the FE model of a sample or a structure) and find the solutions for all DVs. 

 
 VE volumetric constitutive equation Eq. 4(a) is converted to: 

        * * 1 , 1 . 1 4 * 1T ma d u m TIME u m solid eelvol u test u m        

 VE deviatoric constitutive equation Eq. 4(b) is converted to: 

        * * 2 , 2 . 1 4 * 2T m ij ij ij ija d u m TIME u m solid eeldev u test u m       

 VP initiation and evolution Eqs. 6 and 7 for viscoplastic strain are converted to: 

         3 , 0,0, 1 , . 3
N

ij ij ijd u TIME if f f Pa d g solid Sl test u       

 VF initiation and evolution Eqs. 23 and 28 for viscofracture damage are converted to: 

 
 
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1 3 4
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7
4, 4

6
( ) )

2 2 1 4
nG

d u T
H u

fIME i test uRPSE DPSE A RPSE
uc

  
   
  
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(4) Update apparent stress using Eq. 29, which is presented as: 
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. 1 4 1 2 . 1 4 2

ij ij

M

m m ij ij
m

Solid Sl u K solid eelvol G solid eeldev u

K solid eelvol u u m G solid eeldev u u m

 



        
           


  

 
where d(u, TIME) is a time derivative of a variable u. solid.eelvol and solid.eeldevij are 
volumetric and deviatoric components of apparent viscoelastic strains (solid.eelij) which are 
determined in the Linear Elastic Solid module and solid.eelij =solid.elij – u3ij. Note that solid.elij 
is apparent total strain and u3ij is apparent viscoplastic strain since the apparent stress solid.Slij is 
used in Eq. 29. test(u) is a test function operating on the dependent variable u. Note that the 
weak form of a PDE is a generalization of the Virtual Work Principle and the test(u) is 
equivalent to virtual displacement and u is regarded as an internal state variable. One can find 
that it is very efficient and no user-coded subroutine is needed to convert the mathematical 
constitutive equations to weak expressions which can be directly implemented in the PDE-FE 
modeling to perform numerical simulations.  
 
MATERIAL PROPERTIES AS MODEL INPUTS 
Model input parameters are critically important for accurate FE predictions of material 
behaviors. An existing method for model calibration, i.e., determination of model parameters, is 
performed via fitting the FE predictions to a series of test results and minimizing the overall 
errors between test results and the FE predictions by adjusting the model parameters (13, 36). An 
argument is that the nonlinear regression can lead to non-unique solutions to the model 
parameters and eventually cause incorrect predictions of the material behaviors when the models 
are used in a condition that is not included in the model parameter calibration. Instead the 
authors identify the model parameters from the fundamental material properties and mechanical 
relationships. A number of unique relationships have been derived between the model 
parameters and material properties (e.g., Eqs. 11, 12, 16, 19, and 24). The authors have also 
presented systematic testing and data analysis methods in previous studies to determine the 
material properties and model parameters, details of which are not repeated in this paper but 
referred to the publications (4, 5, 17, 25, 37).  

Four asphalt mixtures were selected to validate the VEPF models and the weak form PDE 
based FE modeling. Table 1 summarizes the four mixtures, test methods, testing parameters, 
material properties and the corresponding references where the data were reported. For VE 
characterization, dynamic modulus master curves were constructed to determine the Prony model 
parameters of the relaxation bulk and shear moduli, as well as the modulus time-temperature 
shift factor (17). Lateral surface scanning tests were used to determine the anisotropic vector 
magnitude (Δ') so that the slope of the plastic potential (β) can be calculated (25). The VP yield 
surface and strain hardening parameters were determined from the constant-strain-rate 
compressive strength (CS) tests (using the stress-strain curve before peak stress) at different 
confinements and temperatures (37). The Perzyna’s parameters were determined by destructive 
repeated load (RL) tests to evaluate the viscosity and loading rate dependence (25). The bond 
energy (ΔG) can be back-calculated from compressive strength based on the CS test or estimated 
by cohesive and adhesive surface energy components measured by surface chemistry tests (4). 
The Paris’ law coefficients for VF models were proven to be independent of temperature, 
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loading mode and rate, which were identified by the overstress part (after the peak stress) of the 
CS tests (5) or the tertiary flow part of the RL tests (6). Note that pseudo-strain was used to 
perform strain decomposition in all destructive tests (CS and RL) so that the total strain is 
decomposed into VE, VP, and VF strains which are used individually to determine the 
corresponding material properties.  

 
RESULTS AND DISCUSSIONS 
Figure 1 compares the stress-strain curves of the compressive strength test and the FE modeling. 
One can find that VE models (in section 2.1) can only predict the material responses before the 
initial yield stress (point A), which is an undamaged and pure viscoelastic process. The VP strain 
start to accumulate from point A as shown in Fig.1. VEP models including VE and VP 
constitutions (in sections 2.1 and 2.2) can predict the material responses until the peak stress 
(point C), after which the VEP prediction shows a perfect-plastic behavior (a flat stress-strain 
curve) which is unreasonable for the mixture. It is also found that the VEP predictions match 
with the test data in part AB, whereas mismatch in part BC. Point B is the moment when the 
cracking damage is initiated and the damage density begins to grow (see Fig.1). Thus VEP 
predicting errors in part BC result from the cracking damage. The VEPF model consisting of VE, 
VP, and VF constitutions accurately predicts the whole stress-strain curve, which demonstrates 
that it can model the coupling of the VE, VP and VF characteristics of the material. Note that the 
peak stress corresponds to a damage density of 4% which equals the air void content of the 
sample. The same results were found for all tested and modelled samples. This is reasonable 
since the air void radius was used in Eq.24 to estimate the critical crack size that defines the 
crack initiation by Eq. 23. Thus it is believed that the part BC is a stage coupled VE-VP-VF 
process with crack initiation and, after the peak stress, part CD is a stage coupled VE-VP-VF 
process with an increasing VP strain and growing VF damage density, i.e., crack propagation. 
Fig.1 also shows that VP strain becomes saturated at point D, after which the material is in a VE-
VF rupture process.  

Figs. 2, 3, and 4 shows the stress-strain curves of the compressive strength test and VEPF 
modeling results for the four different asphalt mixtures at one temperature without confinement, 
one mixture (N4-0) at three confining pressures, and one mixture (N4-6) at five temperatures, 
respectively. It is concluded from the fairly good match between FE modeling and the test results 
that the VEPF model can accurately characterize the coupling of the VE, VP and VF material 
responses for different asphalt mixtures and at different confinements and temperatures.  

Further VEPF modeling was performed on the asphalt mixture under haversine repeated 
and cyclic loads. As shown in Figures 5 and 6, the load amplitude was 1MPa and loading period 
was 40 sec, where the repeated load has no rest period and the cyclic load has a rest period of 40 
sec. Three cycles were modelled using VEPF models in Comsol. It can be found that the total 
strain, VE strain and VP strain are predicted by the models, where the total and VE strain lag 
behind the stress due to viscoelastic relaxation. The VE strain dominates the total strain. The VP 
strain starts to grow after a period of time in the first half of each haversine load cycle rather than 
from the very beginning of the cycle as indicated in the existing modeling. This demonstrates 
that the yield surface has to be achieved before the VP strain accumulates. The increase of the 
VP strain in each load cycle exhibits an increasing slope which differs from the decreasing slope 
as reported in the literature. The increasing rate of the VP strain results from the increasing 

deriving forces (  2 1J I    ) due to the increasing external load and the declining hardening 

resistance ( ka a ) due to the decreasing total strain rate, which is true for the first half of the 
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haversine loading. Figures 5 and 6 also show that the total VP strain increment in a load cycle is 
less than that in the previous load cycle. This is caused by the viscoelastic strain hardening 
resulting from the VP strain accumulation with the repeated load cycles. Comparing Figure 5 to 
Figure 6 shows that the rest period does not affect the accumulation of the VP strain, however it 
must be noted that the viscofracture has not been introduced since only three cycles were 
simulated in this study. Coupling VF with VP under repeated/cyclic loads considering loading 
rate dependence as well as their predictions comparing with laboratory test results will be 
continuing studies after this paper.  

 
CONCLUSIONS 
The study developed a coupled viscoelastic-plastic-fracture (VEPF) constitutive models for 
asphalt mixtures. The viscoelasticity (VE), viscoplasticity (VP) and viscofracture (VF) material 
behaviors of asphalt mixtures were simulated under monotonic and repeated loading conditions 
using a weak form partial differential equation (PDE) based finite element modeling (FEM) 
technique with no need of programming a material subroutine. The below conclusions were 
drawn from the study.  
 

 Viscoelastic and viscoplastic deformation occur simultaneously with viscofracture 
damage for asphalt mixtures in compression and at high temperatures. The developed VEPF 
model can model the initiation and evolution of both viscoplastic deformation and viscofracture 
cracking for different mixtures and at varying confinements and temperatures. 

 Under a monotonic compressive load, the asphalt mixtures exhibit a sequenced process 
including a pure VE stage before initial yielding, a VE/VP strain accumulation stage, a 
VE/VP/VF crack initiation stage before peak stress, a VE/VP/VF crack propagation stage until a 
final rupture stage that is a VE/VF stage with a saturated VP deformation. 

 Under a repeated/cyclic load, the VE strain lags behind the stress and the VP strain 
increases following an increasing rate after the yielding criteria is achieved during the first half 
of the loading period. The total VP strain increment in a load cycle declines with load cycles due 
to strain hardening effect.  

 Weak form PDE based FE method can effectively compute the complex VE/VP/VF 
constitutive models and predict the material behaviors for asphalt mixtures without a need of 
programming material subroutines. The models have been validated with monotonic loading 
tests and more validations of the VEPF models in PDE-FE modeling are being performed for 
asphalt mixtures under repeated loads and in tensile conditions. 
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TABLE 1 Testing Methods, Asphalt Mixture Types, Material Properties Determined as 
Model Inputs and Data Resources 

Material 
Property 

Asphalt 
Mixtures 

Binder Binder-N (PG64-16) 

Data 
Resources 

Air Void 4% 7% 

Aging Unaged 
3-month 

aged 
6-month 

aged 
6-month 

aged 

Test Methods Label N4-0 N4-3 N4-6 N7-6 

Visco-
elasticity 

Dynamic modulus 
tests (@ 10, 25, 

40, 55°C) 

K∞, Km 
G∞, Gm 

K(t), and G(t) are calculated from E(t) and υ0 
at a reference temperature of 40°C. 

Table 3 of 
Ref.(17). 

ΔE 
(J/mol) 

226,326 186,777 105,524 213,773 
Table 2 of 
Ref.(17) 

Anisotropy Δ' tests Δ' 0.3106 0.3354 0.3880 0.4088 
Table 8-2 

of Ref.(25) 

Visco-
plasticity 

*Compressive 
Strength (CS) 

tests @ 40°C, and  
confinements of 

0, 103.5, 207 kPa 
 

ϕ (°) 46.8 48.9 45.9 44.8 

Table 3 of 
Ref.(37)  

 
 

 

C (kPa) 143.6 227.3 302.5 203.9 
α 0.370 0.382 0.363 0.354 
κ0 (kPa) 150.8 241.5 319.6 218.4 
κ1 (kPa) 75.0 111.0 148.6 107.8 
κ2 (1/ε) 3,060 11,010 6,410 4,430 
d 0.609 0.598 0.614 0.629 

&CS tests on N4-6 
@40,45,50,55,60°C 

ΔEk 

(J/mol) 
NA NA 21,020 NA 

CS tests on N7-6 
@5 strain rates 

amin NA NA NA 0.49 
amax NA NA NA 1.91 
κ3 NA NA NA 0.3811 

Eq.19  β 0.171 0.185 0.216 0.229 
Table 8-3 

of Ref.(25) Repeated load tests 
@ 600kPa, 1Hz 

Γ (1/s) 1.30E-7 9.12E-8 2.31E-8 8.90E-8 
N 1.71 1.71 1.77 1.90 

Visco-
fracture 

Eq.24 c (mm) 0.65 0.65 0.65 0.79 
Fig.5 of 
Ref.(4) 

&CS tests on N4-6 
@40,45,50,55,60°C ΔEG (J/mol) NA NA 36,016 NA 

*CS tests at 40°C 
and confinements 
of 0, 103.5, 207 

kPa 

ΔG(N/m) 0.079 0.155 0.324 0.224 
A (1/s) 2.39E-6 1.01E-7 3.00E-9 4.50E-8 Fig.4 of 

Ref.(5) n 1.404 1.720 2.099 1.715 
&indicating the same data from CS tests on N4-6 @40, 45, 50, 55, 60°C are used. 
*indicating the same data from CS tests at 40°C and confinements of 0, 103.5, 207 kPa are used. 
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FIGURE 1 Stress-strain curves of an asphalt mixture lab test results vs. viscoelastic (VE), 
viscoelastic-plastic (VEP), and viscoelastic-plastic-fracture (VEPF)  model predictions 
(including damage density and effective viscoplastic strain predicted by VEPF model). 
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FIGURE 2 Stress-strain curves of laboratory compressive strength test results and 
viscoelastic-plastic-fracture (VEPF) model predictions for the four different asphalt 
mixtures. 
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FIGURE 3. Stress-strain curves of compressive strength test results and viscoelastic-
plastic-fracture (VEPF) model prediction for an asphalt mixture (N4-0) at three different 
confining pressures. 
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FIGURE 4. Stress-strain curves of compressive strength test results and viscoelastic-
plastic-fracture (VEPF) model predictions for an asphalt mixture (N4-6) at five 
temperatures. 
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FIGURE 5 Total strain, viscoelastic (VE) and viscoplastic (VP) strain responses of 
viscoelastic-plastic-fracture (VEPF) models in a repeated load without rest periods. 
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FIGURE 6 Total strain, viscoelastic (VE) and viscoplastic (VP) strain responses of 
viscoelastic-plastic-fracture (VEPF) models in a cyclic load with rest periods. 
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