15 research outputs found

    Syndecans Reside in Sphingomyelin-Enriched Low-Density Fractions of the Plasma Membrane Isolated from a Parathyroid Cell Line

    Get PDF
    BACKGROUND: Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [(35)S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([(35)S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [(35)S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30-33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase. CONCLUSIONS/SIGNIFICANCE: Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms

    Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones

    Get PDF
    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins

    De novo mammalian prion synthesis

    No full text
    Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC

    Quantitative neuroproteomics of an in vivo rodent model of focal cerebral ischemia/reperfusion injury reveals a temporal regulation of novel pathophysiological molecular markers

    No full text
    Cerebral ischemia or stroke, an acute neurological injury lacking an effective therapy, is the second leading cause of death globally. The unmet need in stroke research is to identify viable targets and to understand their interplay during the temporal evolution of ischemia/reperfusion (I/R) injury. Here we report a temporal signature of the ischemic hemisphere revealed by the isobaric tag for relative and absolute quantification (iTRAQ)-based 2D-LC–MS/MS strategy in an in vivo middle cerebral artery occlusion (MCAO) model of focal cerebral I/R injury. To recapitulate clinical stroke, two hours of MCAO was followed by 0, 4, and 24 h of reperfusion to capture ischemia with an acute and subacute durations of reperfusion injury. The subsequent iTRAQ experiment identified 2242 proteins from the ischemic hemisphere with <1.0% false discovery rate. Data mining revealed that (1) about 2.7% of detected proteins were temporally perturbed having an involvement in the energy metabolism (Pygb, Atp5b), glutamate excitotoxicity (Slc1a3, Glud1), neuro-inflammation (Tf, C3, Alb), and cerebral plasticity (Gfap, Vim, Gap43); (2) astrocytes participated actively in the neurometabolic coupling underlining the importance of a cerebro-protective rather than a neuro-protective approach; and (3) hyper-acute yet progressive opening of the blood brain barrier (BBB), accompanied by stimulation of an innate immune response and late activation of a regenerative response, which provides an extended therapeutic window for intervention. Several regulated proteins (Caskin1, Shank3, Kpnb1, Uchl1, Mtap6, Epb4.1l1, Apba1, and Ube1x) novel in the context of stroke were also discovered. In conclusion, our result supports a dynamic multitarget therapy rather than the traditional approach of a unilateral and sustained modulation of a single target to address the phasic regulation of an ischemic proteome.Accepted Versio
    corecore