226 research outputs found

    Exploring oxidative modifications of tyrosine:an update on mechanisms of formation, advances in analysis and biological consequences

    Get PDF
    Protein oxidation is increasingly recognised as an important modulator of biochemical pathways controlling both physiological and pathological processes. While much attention has focused on cysteine modifications in reversible redox signalling, there is increasing evidence that other protein residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor the formation of oxidised derivatives, which depends on a variety of analytical techniques. While antibody-dependent techniques such as ELISAs are commonly used, these have limitations, and more specific assays based on spectroscopic or spectrometric techniques are required to provide information on the exact residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation processes are important in vivo and can contribute to cellular pathology

    Empowering SMEs to make better decisions with Business Intelligence: A Case Study

    Get PDF
    With the advance of Business Information Systems (BIS), irrespective of the size, companies have adopted an approach to electronic data collection and management for two decades. The advancement in technology means they have in their possessions large volumes of historical data. Large organizations have cached on this and use a range of tools and techniques to leverage the usefulness of this information to make more informed business decisions. For most small and medium- sized enterprises (SMEs), however, such data typically sits in an archive without being utilized. While SMEs appreciate the need for utilizing historical data to make more informed business decisions, they often lack the technical knowhow and funding to embrace an effective BI solution. In this paper, drawing from our experience in implementing a BI solution for a UK SME we discuss some potential tools and strategies that could help SMEs overcome these challenges so as to reap the benefits of adopting an effective BI solution

    Risk of requiring a wheelchair in primary progressive multiple sclerosis: Data from the ORATORIO trial and the MSBase registry

    Get PDF
    Background and purpose: Reaching Expanded Disability Status Scale (EDSS) ≥7.0 represents the requirement for a wheelchair. Here we (i) assess the effect of ocrelizumab on time to EDSS ≥7.0 over the ORATORIO (NCT01194570) double-blind and extended controlled periods (DBP+ECP), (ii) quantify likely long-term benefits by extrapolating results, and (iii) assess the plausibility of extrapolations using an independent real-world cohort (MSBase registry; ACTRN12605000455662). Methods: Post hoc analyses assessing time to 24-week confirmed EDSS ≥7.0 in two cohorts of patients with primary progressive multiple sclerosis (baseline EDSS 3.0–6.5) were investigated in ORATORIO and MSBase. Results: In the ORATORIO DBP+ECP, ocrelizumab reduced the risk of 24-week confirmed EDSS ≥7.0 (hazard ratio = 0.54, 95% confidence interval [CI]: 0.31–0.92; p = 0.022). Extrapolated median time to 24-week confirmed EDSS ≥7.0 was 12.1 and 19.2 years for placebo and ocrelizumab, respectively (7.1-year delay [95% CI: −4.3 to 18.4]). In MSBase, the median time to 24-week confirmed EDSS ≥7.0 was 12.4 years. Conclusions: Compared with placebo, ocrelizumab significantly delayed time to 24-week confirmed wheelchair requirement in ORATORIO. The plausibility of the extrapolated median time to reach this milestone in the placebo group was supported by observed real-world data from MSBase. Extrapolated benefits for ocrelizumab over placebo could represent a truly meaningful delay in loss of ambulation and independence

    Combined intervention with pioglitazone and n-3 fatty acids in metformin-treated type 2 diabetic patients: improvement of lipid metabolism

    No full text
    Background: The marine n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert numerous beneficial effects on health, but their potency to improve treatment of type 2 diabetic (T2D) patients remains poorly characterized. We aimed to evaluate the effect of a combination intervention using EPA?+?DHA and the insulin-sensitizing drug pioglitazone in overweight/obese T2D patients already treated with metformin.Methods: In a parallel-group, four-arm, randomized trial, 69 patients (66 % men) were assigned to 24-week-intervention using: (i) corn oil (5 g/day; Placebo), (ii) pioglitazone (15 mg/day; Pio), (iii) EPA?+?DHA concentrate (5 g/day, containing ~2.8 g EPA?+?DHA; Omega-3), or (iv) pioglitazone and EPA?+?DHA concentrate (Pio&amp; Omega-3). Data from 60 patients were used for the final evaluation. At baseline and after intervention, various metabolic markers, adiponectin and cytokines were evaluated in serum using standard procedures, EPA?+?DHA content in serum phospholipids was evaluated using shotgun lipidomics and mass spectrometry, and hyperinsulinemic-euglycemic clamp and meal test were also performed. Indirect calorimetry was conducted after the intervention. Primary endpoints were changes from baseline in insulin sensitivity evaluated using hyperinsulinemic-euglycemic clamp and in serum triacylglycerol concentrations in fasting state. Secondary endpoints included changes in fasting glycemia and glycated hemoglobin (HbA1c), changes in postprandial glucose, free fatty acid and triacylglycerol concentrations, metabolic flexibility assessed by indirect calorimetry, and inflammatory markers.Results: Omega-3 and Pio&amp; Omega-3 increased EPA?+?DHA content in serum phospholipids. Pio and Pio&amp; Omega-3 increased body weight and adiponectin levels. Both fasting glycemia and HbA1c were increased by Omega-3, but were unchanged by Pio&amp; Omega-3. Insulin sensitivity was not affected by Omega-3, while it was improved by Pio&amp; Omega-3. Fasting triacylglycerol concentrations and inflammatory markers were not significantly affected by any of the interventions. Lipid metabolism in the meal test and metabolic flexibility were additively improved by Pio&amp; Omega-3.Conclusion: Besides preventing a modest negative effect of n-3 fatty acids on glycemic control, the combination of pioglitazone and EPA?+?DHA can be used to improve lipid metabolism in T2D patients on stable metformin therapy.Trial registration: EudraCT number 2009-011106-42.<br/
    corecore