44 research outputs found

    An international comparison of Retinopathy of Prematurity grading performance within the Benefits of Oxygen Saturation Targeting (BOOST) II trials. International variation in ROP grading.

    Get PDF
    PurposeTo investigate whether the observed international differences in retinopathy of prematurity (ROP) treatment rates within the Benefits of Oxygen Saturation Targeting (BOOST) II trials might have been caused by international variation in ROP disease grading.MethodsGroups of BOOST II trial ophthalmologists in UK, Australia, and New Zealand (ANZ), and an international reference group (INT) used a web based system to grade a selection of RetCam images of ROP acquired during the BOOST II UK trial. Rates of decisions to treat, plus disease grading, ROP stage grading, ROP zone grading, inter-observer variation within groups and intra-observer variation within groups were measured.ResultsForty-two eye examinations were graded. UK ophthalmologists diagnosed treat-requiring ROP more frequently than ANZ ophthalmologists, 13.9 (3.49) compared to 9.4 (4.46) eye examinations, P=0.038. UK ophthalmologists diagnosed plus disease more frequently than ANZ ophthalmologists, 14.1 (6.23) compared to 8.5 (3.24) eye examinations, P=0.021. ANZ ophthalmologists diagnosed stage 2 ROP more frequently than UK ophthalmologists, 20.2 (5.8) compared to 12.7 (7.1) eye examinations, P=0.026. There were no other significant differences in the grading of ROP stage or zone. Inter-observer variation was higher within the UK group than within the ANZ group. Intra-observer variation was low in both groups.ConclusionsWe have found evidence of international variation in the diagnosis of treatment-requiring ROP. Improved standardisation of the diagnosis of treatment-requiring ROP is required. Measures might include improved training in the grading of ROP, using an international approach, and further development of ROP image analysis software.Eye advance online publication, 28 July 2017; doi:10.1038/eye.2017.150

    Plasma Cholesterol-Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    Get PDF
    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (>= 80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr(-/-)Apob(100/100)Mttp(flox/flox)Mx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. Author Summary The main underlying cause of heart attacks and strokes is atherosclerosis. One strategy to prevent these often deadly clinical events is therefore either to slow atherosclerosis progression or better, induce regression of atherosclerotic plaques making them more stable. Plasma cholesterol lowering (PCL) is the most efficient way to induce atherosclerosis regression but sometimes fails to do so. In our study, we used a mouse model with elevated LDL cholesterol levels, similar to humans who develop early atherosclerosis, and a genetic switch to lower plasma cholesterol at any time during atherosclerosis progression. In this model, we examined atherosclerosis gene expression and regression in response to PCL at three different stages of atherosclerosis progression. PCL led to complete regression in mice with early lesions but was incomplete in mice with mature and advanced lesions, indicating that early prevention with PCL in individuals with increased risk for heart attack or stroke would be particularly useful. In addition, by inferring PCL-responsive gene networks in early, mature and advanced atherosclerotic lesions, we identified key drivers specific for regression of early (PPARG), mature (MLL5) and advanced (SRSF10/XRN2) atherosclerosis. These key drivers should be interesting therapeutic targets to enhance PCL-mediated regression of atherosclerosis

    H∞\mathcal{H}_\infty optimal controller design with closed-loop positive real constraints

    No full text
    International audiencePositive real constraints on the closed-loop of linear systems guarantee stable interaction with arbitrary passive environments. Two such methods of H∞ optimal controller synthesis subject to a positive real constraint are presented and demonstrated on numerical examples. The first approach is based on an established multi-objective optimal control framework using linear matrix inequalities and is shown to be overly restrictive and ultimately infeasible. The second method employs a sector transformation to substitute the positive real constraint with an equivalent H∞ constraint. In two examples, this method is shown to be more reliable and displays little change in the achieved H∞ norm compared to the unconstrained design, making it a promising tool for passivity-based controller design
    corecore