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Abstract

Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-

inflammatory properties but these cannot be fully exploited with oral statin therapy due to low

systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein
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(rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We

demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show this effect is mediated

through inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in

an apolipoprotein E-knockout mouse model of atherosclerosis and show they accumulate in

atherosclerotic lesions where they directly affect plaque macrophages. Finally we demonstrate that

a three-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression,

while a one-week high-dose regimen markedly decreases inflammation in advanced

atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that

directly affects plaque inflammation.

Introduction

Atherosclerotic diseases, such as acute myocardial infarction, are a major cause of death and

disability worldwide [http://www.who.int/cardiovascular_diseases/en/]. Preventive strategies

currently focus on controlling risk factors, such as smoking, blood pressure, serum glucose

and lipid levels1. Despite the success of these preventive measures, substantial residual risk

remains even when treatment goals are fully met2. In patients that suffered a myocardial

infarction the recurrence risk of an acute coronary syndrome is high, particularly within the

first year when recurrence rates are up to 17.4%3. A recent study explained this phenomenon

by showing that a systemic response to ischemic injury aggravates inflammation in

atherosclerotic plaques at a distance, due to increased monocyte recruitment4. Monocytes

that infiltrate the plaque differentiate into macrophages, which produce proteolytic enzymes

that digest extracellular matrix causing plaque rupture5. The immediate site of plaque

rupture contains a high concentration of inflammatory cells6. Plaque inflammation is

therefore pursued as a therapeutic target to prevent atherothrombotic events7.

In the current study we developed a nanomedicine-based delivery strategy based on

reconstituted high density lipoprotein (rHDL) nanoparticles that allow for drug delivery to

atherosclerotic plaques. As a cargo for our rHDL nanoparticles we selected a 3-hydroxy-3-

methylglutaryl coenzyme A reductase (HMGR) inhibitor, or statin. Statins are widely orally

prescribed serum low density-lipoprotein (LDL) cholesterol-lowering drugs that upregulate

LDL receptor expression in hepatocytes8. In addition to its effect on hepatocytes, various

studies have established the potent immunomodulating effects of HMGR inhibition in

inflammatory cells9–11. In an atherosclerotic mouse model in which statins did not affect

lipid levels, reduced plaque formation was shown with extremely high doses of oral statin

therapy12. However, in humans increasing the oral statin dose to attain higher plasma

concentrations is not feasible due to the dose-dependent onset of adverse effects such as

hepatoxicity and myopathy13. Normal doses of orally ingested statins hardly enter the

systemic circulation as biotransformation occurs in the liver14.

We addressed this issue by developing a statin-loaded rHDL nanoparticle ([S]-rHDL) that

can be administered intravenously, augments bioavailability, and facilitates the delivery of

statins to atherosclerotic plaque. We show, in an apolipoprotein E-knockout (apoE-KO)

mouse model of atherosclerosis, that a three-month low dose- as well as a one-week high

dose [S]-rHDL treatment regimen markedly reduces plaque macrophage content.
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Results

Study summary

A schematic overview of the study design is shown in Fig 1. First, we studied [S]-rHDL’s

characteristics and its efficacy in different cell lines in vitro. Subsequently, biodistribution

and toxicity, as well as uptake by atherosclerotic plaque macrophages were investigated in

mouse models in vivo. Next, we investigated the in vivo efficacy of a low dose long-term

[S]-rHDL infusion regimen on plaque development and a short-term high dose infusion

regimen on plaque regression in apoE-KO mice.

[S]-rHDL characteristics

We constructed [S]-rHDL from recombinant human apolipoprotein A-1 (ApoA-1), the

phospholipids 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) and 1,2-

dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), in which lipophilic simvastatin was

encapsulated. This resulted in discoid-shaped nanoparticles of 25 to 30 nm in diameter as

determined by dynamic light scattering and transmission electron microscopy (Fig. 2a,

Supplementary Fig. S1, and Supplementary Table S1). Its exact composition was established

by phosphate determinations and simvastatin measurements by high-performance liquid

chromatography (Supplementary Table S1). Stability experiments with the free drug and the

[S]-rHDL nanoparticle formulation in mouse serum demonstrated the protective function of

the rHDL nanoparticle towards statin degradation (Supplementary Fig. S2). To allow its

visualization in cells and tissue via imaging techniques we also synthesized a variant where

an amphiphilic MRI contrast agent, gadolinium - diethylene triamine pentaacetic acid-

distearyl amide (Gd-DTPA-DSA) and/or fluorescent dyes (Cy5.5, DiO or DiR) were

incorporated (Fig. 2a).

In vitro efficacy of [S]-rHDL

To assess [S]-rHDL’s therapeutic potential and function we investigated its anti-

inflammatory effect in vitro. First, we investigated the effect of [S]-rHDL on viability of

murine macrophages (J774A.1) as well as on hepatocytes, endothelial cells and smooth

muscle cells as function of incubation concentration and time. Cells were incubated with

rHDL or [S]-rHDL, with statin doses of 1 μM, 10 μM and 100 μM (Supplementary Fig. S3).

Macrophage survival was comparable in the rHDL and [S]-rHDL incubated cells at 6 and 12

hour time points, while macrophage survival decreased in the [S]-rHDL incubated cells at

24 and 48 hours. A similar response was observed in cultured endothelial cells. Significantly

less loss in cell viability was observed for the smooth muscle cells and hepatocytes

(Supplementary Fig. S3). Subsequently, we investigated if the effect of [S]-rHDL on

macrophage cell viability was mediated through the mevalonate pathway. In macrophages

incubated with [S]-rHDL or free statin (10 μM), we observed a nearly complete loss of cell

viability at 48 hours incubation time, while this did not occur in cells incubated with rHDL.

This effect was abolished when mevalonate was added to [S]-rHDL or free statin (Fig. 2b).

Next, we evaluated [S]-rHDL’s effect on the expression of inflammatory cytokines (Fig. 2c).

We first stimulated the macrophages with LPS and IFN-γ for 16 hours. Cell viability at

these conditions was not markedly affected. We then treated the cells with different

treatments for 24 hours in serum-free condition, and assessed expression of the anti-

Duivenvoorden et al. Page 3

Nat Commun. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



inflammatory markers monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-

α (TNF-α). We observed a decrease in expression of MCP-1 and TNF-α in macrophages

treated with [S]-rHDL or free statins. The expression of MCP-1 and TNF-α was restored by

the addition of mevalonate in macrophages treated with [S]-rHDL and free statins (Fig. 2c).

Cell viability of macrophages treated with [S]-rHDL was similar to control cells

(Supplementary Fig. S4). These data show that [S]-rHDL reduces cell viability and the

production of inflammatory cytokines by inhibiting the mevalonate pathway. Subsequently,

we investigated the mechanism by which [S]-rHDL decreases macrophage cell viability. We

observed that [S]-rHDL decreased macrophage proliferation. We also observed that [S]-

rHDL causes non-apoptotic macrophage cell death (Supplementary Fig. S4).

In vivo biodistribution and toxicity studies

To investigate [S]-rHDL’s biodistribution we designed an [S]-rHDL nanoparticle that

carried 2 labels, namely Cy5.5 conjugated to a phospholipid and the hydrophobic dye DiO

or DiR. Cy5.5-phospholipids incorporated in the corona, while the hydrophobic dyes DiO /

DiR were incorporated in the simvastatin-loaded core of [S]-rHDL (Fig. 2a). Lipoproteins,

including HDL, are dynamic systems that are known to exchange lipid components15–17.

Therefore, we hypothesized that the hydrophobic DiO / DiR core label would display a

different kinetic behaviour from the amphiphilic phospholipid-Cy5.5 corona label. To

investigate this, we injected apoE-KO mice (N=21) with the dual-labelled [S]-rHDL,

sacrificed at different time points (N=3 per time point), and collected the blood, hearts,

aortas, spleens, livers and kidneys. The blood was separated into three fractions, i.e. plasma,

mononuclear cells (MNC) and red blood cells (RBC). We observed that the majority of the

Cy5.5 labelled phospholipids remained in the plasma fraction of the blood, while a small

fraction was transferred to the RBC (Fig. 3a and b). The core label DiO was detectable in the

serum fraction only and displayed longer circulation kinetics. Further analysis of blood by

flow cytometry revealed the small fraction of DiO associated with MNC to be most

abundantly present in pro-inflammatory Gr-1hi monocytes (Fig. 3c, Supplementary Fig. S5).

Near infrared fluorescence (NIRF) imaging and fluorescence microscopy of the spleen, liver

and kidneys revealed the highest DiR presence in liver tissue (Supplementary Fig. S6).

Nanoparticles were found in heart, aorta, liver, spleen, and kidney tissue, but not in muscle

tissue (Supplementary Fig. S6). A combination of restricted nanoparticle accessibility from

the muscle microvasculature to muscle tissue and the absence of SR-B1, ABCA-1 or

ABCG-1 expression may explain why our nanoparticle were not found associated with

myocytes. In the spleen, DiR signal co-localized with CD68-stained monocytes/

macrophages (Supplementary Fig. S7). Flow cytometry analysis of spleen cells revealed that

macrophages and Ly-6chi (Gr-1hi) monocytes took up [DiO-S]-rHDL most efficiently, while

neutrophils and Ly-6clo (Gr-1hi) moncoytes took up markedly less nanoparticles. [S]-rHDL

did not exert toxic effects on liver, kidney or myocytes when it was administered to mice at

a high dose (60 mg/kg simvastatin, 40 mg/kg ApoA-1, 4 intravenous infusion / week) for a

week (Supplementary Fig. S8).
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Accumulation and uptake in atherosclerotic plaques

To assess whether our nanoparticles accumulated in atherosclerotic lesions and was taken up

by plaque macrophages, we conducted two experiments. In the first experiment, apoE-KO

mice on a high cholesterol diet for 28 weeks, were infused with gadolinium and statin

containing rHDL ([Gd-S]-rHDL, N=3), or placebo (N=3). In vivo MRI experiments

performed with a 9.4 Tesla scanner revealed signal enhancement in the vessel wall on T1-

weighted images 24 hours after infusion of [Gd-S]-rHDL, indicating pronounced

accumulation of our nanoparticle in the vessel wall (Fig. 2d).

In the second experiment dual-labelled [S]-rHDL, with Cy5.5-phospholipids in the corona

and DiO / DiR in the core, were injected in apoE-KO mice. 24 hours post-injection, the mice

were sacrificed and the hearts and aortas were excised. The distribution of DiR labelled [S]-

rHDL in intact aortas was investigated by NIRF imaging and revealed its accumulation in

regions rich in plaques (Fig. 3e). The targeting kinetics of DiO (the core label) and Cy5.5-

phospholipid label displayed a pattern similar to the blood kinetics (Fig. 3f), namely that the

Cy5.5-labelled phospholipids appeared in the plaque until 4 hours post injection after which

their presence declined. In contrast, the DiO core label was retained in the plaque up to at

least 24 hours. Furthermore, fluorescence microscopy of plaques revealed co-localization of

DiO-labelled [S]-rHDL with macrophages in the aortic root (Fig. 3g). Flow cytometry of

cells from atherosclerotic plaques showed that the fluorescence intensity of the core label

DiO was 5–6 fold stronger in macrophages (MΦ) than in freshly recruited monocytes (Mo)

(Fig. 3h, Supplementary Fig. S5).

In vivo efficacy of low dose [S]-rHDL infusions

To investigate the effect of [S]-rHDL on plaque inflammation we used apoE-KO mice

(N=74) that were on a high cholesterol diet for 14 weeks in order to develop atherosclerosis.

Statins are known not to affect blood cholesterol levels of apoE-KO mice, because they lack

the major ligand for the LDL receptor, namely apoE18,19, and also metabolize statins very

fast in their livers20, making this a suitable model to solely investigate the anti-inflammatory

effects of HMGR inhibition. To limit a dominant therapeutic effect of rHDL itself, we used

a low ApoA-1 dose. While the mice remained on the high cholesterol diet, they received bi-

weekly infusions of [S]-rHDL (15 mg/kg statin, 10 mg/kg ApoA1, N=16), placebo (saline

infusion, N=15), orally dosed statin (15 mg/kg statin daily, N=15) or bi-weekly infusion of

bare rHDL nanoparticles (10 mg/kg ApoA1, N=15) for 12 consecutive weeks. We also

included a group of mice that were sacrificed when the other groups started their treatment,

which we refer to as the baseline group (N=12). As plaque formation in apoE-KO mice

occurs more rapidly in the aortic root than in the abdominal aorta we were able to study the

effects of [S]-rHDL in both early and established atherosclerotic lesions. In the aortic root

plaque formation is reproducible, consistent and homogenous, and covers a length of less

than 0.5 mm, which enables us to apply quantitative histology analyses. We evaluated 42

cross-sections of the aortic sinus area per mouse. This resulted in the analysis of 3108 cross-

sections in total. Cross-sections were stained for connective tissue with hematoxylin

phloxine saffron (HPS) or immunostained with CD68 antibodies to visualize macrophages.

We developed a quantitative and digitized method with in-house developed software

(Matlab) for the analysis of the histology images, to quantify total plaque area (macrophages
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plus connective tissue) and macrophage rich area (Supplementary Fig. S9). In contrast to the

development of atherosclerosis in the aortic root, plaque formation in the abdominal aorta is

heterogeneous and covers a length of 2 cm, which excludes histological analysis for an

accurate assessment. Instead we performed longitudinal in vivo 9.4 T MRI in a subset of

mice (N=40, 7–9 per group, Supplementary Fig. S10). Examples of histological sections of

the abdominal aorta are displayed in Supplementary Fig. S11.

Our in vivo MRI data showed that compared to the [S]-rHDL-treated group, vessel wall

thickness was 16% higher in the placebo group (Mann-Whitney U test p=0.01), 12% higher

in the oral statin group (Mann-Whitney U test p=0.004), and 16% higher in the rHDL group

(Mann-Whitney U test p=0.005, Fig. 4a, b) at the end of the study.

Subsequently, all mice (N=74) were sacrificed and atherosclerotic burden was quantified by

means of histology of the aortic sinus. Total plaque area in the [S]-rHDL group was

significantly decreased by 34% compared to the baseline group (Mann-Whitney U test

p<0.001), by 37% compared to placebo (Mann-Whitney U test p=0.002), and by 28%

compared to rHDL (Mann-Whitney U test p=0.006, Fig. 4c). The [S]-rHDL group showed a

trend towards a decrease of 17% compared to the oral statin group (Mann-Whitney U test

p=0.06, Fig. 4c). Plaque macrophage content was markedly decreased in the [S]-rHDL

group by 56% compared to the baseline group (Mann-Whitney U test p<0.001), by 57%

compared to placebo (Mann-Whitney U test p=0.001), by 37% compared to oral statin

(Mann-Whitney U test p=0.003), and by 40% compared to rHDL (Mann-Whitney U test

p=0.03, Fig. 4d). In Fig. 4e typical and representative histological sections of the different

groups are shown.

We also quantified the cholesterol content of the thoracic aortas of all mice (N=74), by

digesting the excised aortas followed by chemical quantification of the cholesterol content.

In line with expectation, we did not observe any differences in aorta cholesterol content

across all groups (Supplementary Fig. S12).

Serum triglyceride and total cholesterol levels did not differ significantly across all groups,

although total cholesterol had the tendency to be higher in the placebo and rHDL groups

(Supplementary Fig. S13). Total cholesterol levels were equal in the oral statin and [S]-

rHDL groups, however, fast-performance liquid chromatography showed that the oral statin

group had a more favorable lipid profile than the [S]-rHDL group, with 31% lower VLDL,

16% lower LDL and 37% higher HDL cholesterol (Supplementary Fig. S14). The decrease

in plaque macrophage area by [S]-rHDL remained significant compared to placebo

(Multiple linear regression analysis p=0.002), oral statin (Multiple linear regression analysis

p=0.01), and rHDL (Multiple linear regression analysis p=0.02) after statistical adjustment

for serum total cholesterol levels.

In vivo efficacy of high dose [S]-rHDL infusions

To assess the effect of short term high dose [S]-rHDL therapy on plaque inflammation,

apoE-KO mice that had developed advanced atherosclerotic lesions after 27 weeks of the

high cholesterol diet, were administered high dose [S]-rHDL (60 mg/kg statin, 40 mg/kg

ApoA1, N=7), placebo (saline infusion, N=15), high dose rHDL (40 mg/kg ApoA1, N=8),
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or low dose [S]-rHDL (15 mg/kg statin, 10 mg/kg ApoA1, N=10). All mice (N=40) received

four infusions of their assigned therapy within a single week. Histological assessment of the

aortic sinus area was performed as described before (Supplementary Fig. S9), and a total of

1680 cross sections were analyzed. Histology showed a trend towards a decrease of 31% in

total plaque area in the high dose [S]-rHDL-group compared to placebo (Mann-Whitney U

test p=0.053), and was decreased by 34% compared to high dose rHDL (Mann-Whitney U

test p=0.005), and by 36% compared to the low dose [S]-rHDL-group (Mann-Whitney U

test p=0.006, Fig. 5a). The decrease in total plaque area primarily accounted for the

decreased macrophage positive areas in the high dose [S]-rHDL-group. It was decreased by

84% when compared to placebo (Mann-Whitney U test p<0.001), by 79% compared to high

dose rHDL (Mann-Whitney U test p=0.001), and 77% compared to low dose [S]-rHDL

(Mann-Whitney U test p=0.002, Fig. 5b). In Fig. 5c typical and representative histological

sections of the different groups are shown. Serum triglyceride and total cholesterol levels

were equal across all groups (Supplementary Fig. S15). The difference in plaque

macrophage content between the [S]-rHDL group and placebo (Multiple linear regression

analysis p<0.001), oral statin (Multiple linear regression analysis p<0.001), and rHDL

(Multiple linear regression analysis p=0.004) remained significant after statistical

adjustment for serum total cholesterol levels.

In a subsequent study, also in apoE-KO mice (N=36) with advanced atherosclerosis, we

determined the mRNA expression levels of genes related to inflammation in plaque

macrophages by means of laser capture microdissection (LCM). We compared mice treated

with high dose [S]-rHDL, to mice treated with oral statin therapy, and placebo (Fig. 5d,

Supplementary Fig. S16). We observed that in the high dose [S]-rHDL group, mRNA

expression levels of monocyte recruitment genes (MCP-1, CCL-3, ICAM-1, VCAM-1,

CCL-15, CXCL-12), as well as those of pro-inflammatory genes (TNF-α, IL-1β, IL-1α,

SPP-1), were markedly decreased as compared to the oral statin and placebo groups (Fig.

5d). The anti-inflammatory mannose receptor (MR) mRNA level was increased in the high

dose [S]-rHDL group as compared to placebo, but was similar to the oral simvastatin group

(Fig. 5d).

Finally, to corroborate these findings we performed in vivo fluorescence molecular

tomography with computed tomography (FMT-CT) imaging to visualize and measure the

protease activity in the aortic roots of another 11 apoE-KO mice. We revealed that the

inflammatory protease activity was markedly reduced in apoE-KO mice treated with [S]-

rHDL as compared to placebo (Fig. 5e). Together these data demonstrate the potent local

anti-inflammatory effect of [S]-rHDL in atherosclerotic plaques.

Discussion

In the current study we described the development of a statin-rHDL nanoparticle as a

therapy for reducing atherosclerotic plaque inflammation. The key findings of our study are

that this compound (1) suppresses the inflammatory response of macrophages which is

mediated through the inhibition of intracellular mevalonate pathway, (2) accumulates in

atherosclerotic plaque where it is taken up by macrophages, (3) markedly reduces plaque
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macrophage content and inflammation following both prolonged low dose therapy as well as

short-term high dose therapy, and (4) does not exhibit myo- or hepatotoxic effects.

The platform on which we based our nanoparticle is rHDL. Traditionally, HDL is

considered to remove excess cholesterol from peripheral tissues and transport it to the liver

for fecal excretion, a process referred to as the “reverse cholesterol transport”21,22. For this

reason previous studies have investigated rHDL as a therapeutic agent. Shah et al. showed

that in apoE-KO mice, 18 infusions of 40 mg/kg ApoA1 within 5 weeks had no effect on

plaque size, but reduced plaque lipid content by 40%, and plaque macrophage content by

46%23. In another study, Shah et al. showed in apoE- KO mice that a single injection of 400

mg/kg ApoA1 reduced plaque lipid content by 40–50% and plaque macrophage content by

29–36%24. It is important to note that in the current study we did not aim at employing

rHDL and ApoA1 as a therapeutic agent, apart from its ability to deliver statin to plaque

tissue. Compared to the studies by Shah et al. we used lower ApoA1 doses, namely 24

infusions of 10mg/kg in the 3 months low dose study and 4 infusions of 40 mg/kg ApoA1 in

the single week high dose study. In both our low- and high dose study plaque size was

unchanged in the rHDL-group as compared to placebo, but plaque macrophage content

tended to be lower in the rHDL-groups as compared to placebo. Despite this, we were able

to show a marked reduction in plaque macrophage content by [S]-rHDL treatment compared

to the rHDL-group. rHDL infusion has also been investigated in large randomized controlled

trials in humans25,26. Although the therapeutic efficacy was disappointing, the ApoA1 doses

of 40 mg/kg used in these studies were well tolerated. This shows that the ApoA1 doses of

10 mg/kg and 40 mg/kg that we used can safely be translated to future human studies.

In addition to HDL’s ability to remove excess cholesterol from atherosclerotic plaques,

native HDL also transports proteins involved in inflammation, coagulation, complement

activation27, and endogenous micro RNAs, and delivers them to recipient cells28. This

indicates that native HDL is in fact a carrier vehicle involved in complex intercellular

communication. In the current study we utilize this natural property of HDL to act as a

delivery vehicle of statins to target macrophages in atherosclerotic lesions. We showed that

rHDL protects the statin cargo from catabolism in the serum, increases statin’s

bioavailability, and delivers its cargo to plaques where it is taken up by plaque macrophages.

Our data on pharmacokinetics demonstrate that in the circulation [S]-rHDL is predominantly

located in the plasma, and a small sub-fraction in blood monocytes. Blood monocytes that

took up [S]-rHDL in the circulation and subsequently infiltrated the plaque, could

potentially account for some of the accumulation of [S]-rHDL in the plaque. However,

direct infiltration from the plasma into the plaque most likely accounts for the majority of

[S]-rHDL accumulation in plaques. The reason why, within the vasculature, [S]-rHDL

preferentially accumulates at sites of atherosclerotic lesions is likely related to local

endothelial permeability, which facilitates infiltration of the nanoparticle into the vascular

tissue, after which it is retained due to ingestion by macrophages. We did not investigate the

mechanism by which plaque macrophages take up [S]-rHDL. Native HDL is known to

interact with macrophages through scavenger receptor B1, and adenosine triphosphate

binding cassette transporter A1 and G121,22. Possibly our nanoparticle has a similar

interaction or is simply phagocytosed by macrophages.
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The current study is the first to pursue local delivery of statins to plaque tissue to achieve

local anti-inflammatory effects. The immunomodulating effects of statins have been

established in previous studies, which showed that HMGR inhibition reduces the production

of downstream isoprenoid intermediates (e.g. farnesyl pyrophosphate) in the intracellular

cholesterol synthesis pathway, which decreases the isoprenylation of proteins29,30. This

interferes with the attachment of proteins to the cell membrane, which affects proliferation

and function of inflammatory cells, such as macrophages9–11. In the current study we

confirm the anti-inflammatory effect of statins both in vitro and in vivo. In vitro, we show

that the anti-inflammatory effect remains equally potent when statin is encapsulated in

rHDL as compared to free statin. We also demonstrate that the anti-inflammatory effects of

statins are mediated through the inhibition of the mevalonate pathway, which corroborates

results from previous studies9–11.

A previous study in an atherosclerotic mouse model investigated the effects of oral statin

therapy on atherogenesis. Sparrow et al. treated apoE-KO mice daily with 100 mg/kg

simvastatin for 6 weeks, and showed marked reduction in aortic plaque development despite

the fact that statin therapy did not affect serum lipid levels12. They also showed effects of

their high dose oral statin therapy on carrageenan-induced foot pad edema, a model of

inflammation. They did not investigate the mechanism by which atherogenesis and

inflammation was reduced, but it is conceivable that higher than normal serum levels of

statins were achieved since their oral statin dose was extremely high. In humans it is not

possible to administer such high oral doses due to adverse effects13. In the current study we

used a lower oral statin dose than that used by Sparrow et al., namely 15 mg/kg in the 3

months low dose study. Plaque size and macrophage content tended to be lower in the oral

statin group compared to placebo. Nonetheless, we showed a marked reduction in plaque

inflammation with [S]-rHDL treatment, despite 3.5 times lower weekly doses of statin in

[S]-rHDL-group (15 mg/kg simvastatin, 2 times / week) than that in oral statin-group (15

mg/kg simvastatin / day).

In addition to the decrease in plaque macrophage content following [S]-rHDL treatment, we

were able to show that [S]-rHDL markedly affects plaque macrophage mRNA expression

levels of genes related to inflammation. Furthermore, we observed that short-term high-dose

[S]-rHDL treatment markedly decreased inflammatory protease activity in atherosclerotic

plaques, which was measured in vivo with FMT-CT.

Of note, in the current study we focused on the anti-inflammatory effect of our nanoparticle,

since statins do not affect serum lipid levels in this mouse model. However, we showed that

in the mice nanoparticles were taken up in the liver. In humans [S]-rHDL will undoubtedly

also be taken up by hepatocytes, where the delivered statin will up-regulate the LDL-

receptor expression. Thus in humans, our nanoparticle may have two therapeutic effects,

namely an anti-inflammatory effect on plaques as well as a cholesterol lowering effect due

to its effect on hepatocytes.

The clinical implications of our findings pertain to the field of cardiovascular disease. With

current standard of care therapy, recurrent angina before discharge occurs in up to 10% of

patients following an acute coronary syndrome, and recurrent acute coronary syndrome
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within the first year in 17.4% of patients3. Therefore novel therapeutic strategies like rHDL

infusion are being developed, with the concept to initiate therapy directly after the acute

event in an effort to rapidly decrease plaque vulnerability. Unfortunately, the efficacy of

rHDL infusion alone so far has been disappointing25,26. Extrapolating from the evidence

provided, we envision that [S]-rHDL nanotherapy can facilitate plaque retention of high

quantities of statin following short-term intravenous administration in acute coronary

syndrome patients, thereby modulating plaque inflammation31. This holds promise to

suppress plaque inflammation during the vulnerable period following acute coronary

syndrome, which can support standard-of-care therapy to prevent recurrent plaque rupture

and atherothrombotic events. An advantage of nanotherapy we present is that the individual

components are well tolerated by humans. Statins are prescribed routinely to millions of

patients worldwide, whereas rHDL in lower concentrations has proven to be safe in large

phase IIB trials13,25,26. In our study we did not observe myo- or hepatotoxicity of our

nanoparticle. Therefore, [S]-rHDL represents a novel anti-atherosclerotic nanotherapy with a

high potential for clinical translation.

In conclusion, [S]-rHDL nanotherapy locally treats atherosclerotic inflammation at the level

of the vessel wall. The potency of the treatment allows for the inhibition of plaque

inflammation using a long-term, low-dose treatment regimen, while a short-term, high-dose

treatment regimen can be applied to rapidly deplete inflammation in advanced

atherosclerotic plaques.

Methods

Synthesis of [S]-rHDL

The synthesis of [S]-rHDL was modified from a published method32. Briefly, simvastatin

(AKscentific), 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) and 1, 2-

dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) (both purchased from Avanti Polar

Lipids) were dissolved in chloroform/methanol (4:1 by volume) solvent and dried to form

thin film. Human apolipoprotein A1 proteins (ApoA-1) (CSL, Parkville, Australia) dissolved

in PBS was added to the film and the solution was incubated in 37°C till the film was

hydrated and a homogenous solution was formed. The solution was sonicated to form small

[S]-rHDL nanoparticles. Aggregates were removed by centrifugation and filtration.

Gadolinium-DTPA-DMPE (Avanti Polar Lipids), Cy5.5-DMPE (DMPE was conjugated

with Cy5.5 NHS-ester purchased from GE healthcare), DiR or DiO (Invitrogen) were added

when the nanoparticles were subsequently used for imaging purposes. Control rHDL

nanoparticles without simvastatin were synthesized with the same procedures.

Characterization of [S]-rHDL

Nanoparticles were negatively stained with a method previously reported33. Images were

acquired using a Hitachi H7650 system linked to a SIA (Scientific Instruments and

Applications) digital camera controlled by Maxim CCD software. The mean size of the

different formulations of nanoparticles was determined by dynamic light scattering

(Brookhaven Instruments Corporation, Holtsville, NY) and by measuring the nanoparticles

in transmission electron microscopy (TEM) images. The percentage of phospholipids in the
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nanoparticles was determined by Rouser’s method; the percentage of simvastatin by high

performance liquid chromatography (HPLC) (Shimadzu HPLC instrument); the percentage

of protein by a BCA protein concentration assay (Bio Rad); The longitudinal relaxivity (r1)

of gadolinium loaded [S]-rHDL ([Gd-dye-S]-rHDL) were measured on a 60 MHz Bruker

Minispec (Bruker Medical BmbH, Ettingen) operating at 40 °C. To determine the half-life of

encapsulated simvastatin in [S]-rHDL, a concentration of 1000 μg/ml of simvastatin from

[S]-rHDL or free simvastatin was achieved in mouse serum and the solution was kept at 37

°C. The concentration of intact simvastatin in the serum at different time points was

measured with HPLC) (Shimadzu HPLC equipped with a column (Ascentis C18, 10 cm x

4.6 mm I.D., 3 μm particles (581321-U) Reversed phase), using a protocol adapted from the

published one34. The mobile phase was 80% Acetonitrile and 20% H2O and flow rate was

0.5 ml/min. The half-life of simvastatin in [S]-rHDL and free simvastatin was defined as the

length of incubation time when the serum simvastatin concentration was 500 μg/ml.

In vitro cell assays

J774A.1 (murine macrophages), MS1 (murine endothelial cells), MOVAS (murine aortic

smooth muscle cells) and Hepa-1c1c7 (murine liver cells) were cultured under ATCC-

recommended conditions. [S]-rHDL nanoparticles were added to the cells to reach different

concentrations of simvastatin in cell culture, whereas rHDL nanoparticles were added to

reach the same ApoA-1 concentrations as [S]-rHDL in each condition, and mevalonate was

added to reach 100 μM when needed. The cell viability was determined by measuring

intracellular ATP concentration by following the manufacturer’s instructions (Promega,

CellTiter Glo). To measure MCP-1 and TNF-α production by J774A.1 cells, the cells were

first challenged with LPS and IFN-γ for 16 hours, and subsequently switched to serum-free

culture condition and treated with [S]-rHDL, free simvastatin, rHDL or nothing for another

24 hours at the concentration of 10 μM simvastatin or equal concentration of ApoA-1 from

rHDL, in the presence or absence of 100 μM mevalonate. TNF-α and MCP-1 concentrations

in the supernatants were measured with ELISA by following the manufacturer’s instructions

(Biolegend).

For apoptosis/necrosis assay, murine cells (J774A.1) were treated with 10 μM simvastatin

equivalent [S]-rHDL for 24 hours, and then stained with either apoptosis specific dye (YO-

PRO-1) or necrosis specific dye (Propidium iodide). Measurement was used following

manufacture’s instruction (life technologies, Cat# V13243). In brief, apoptotic cells are

defined as YO-PRO-1 positive Propidium iodide positive on flow cytometry graph, while

necrosis cells are YO-PRO-1 negative Propidium iodide positive. For cell proliferation,

assay was done by following the manufacturer’s instruction (life technologies, Cat#

C34554). In brief, macrophages were incubated with 5 μM CFSE for 10 min and the rest

CFSE was extensively removed. Subsequent, the cells were treated with 10 μM simvastatin

equivalent [S]-rHDL or nothing for 24 hours. The percentage of proliferating cells of the

total treated cells was determined by flow cytometry with a standard protocol.

Animals and diet

All animals were used based on an approved institutional protocol from Icahn School of

Medicine at Mount Sinai. 5 weeks old male apoE-KO mice (B6.129P2-Apoetm1Unc) were
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purchased from Jackson laboratory. All mice were fed with a high cholesterol diet,

containing 20.3% fat, 22.9% protein, 45.7% carbohydrate and 0.2% cholesterol (Research

Diets Inc., USA).

In vivo 9.4 Tesla MRI

To image the abdominal aortas, the mice were anesthetized and maintained by isoflurane

containing air, and were subsequently scanned with a 9.4 Tesla MRI system (Bruker

Instruments, Germany). T1-weighted MRI was performed using a black blood sequence.

Twenty-two consecutive 500 μm thick slices with 500 μm inter-slice distance were acquired

using a spin echo sequence with a 256X256 matrix size. A micro-scale in-plane resolution of

101 μm was achieved. The repetition time (TR) and echo time (TE) for the T1-weighted

scanning were 800 and 8.6 ms, respectively. An inflow saturation band of 3 mm was used

with a slice gap of 3 mm for additional luminal flow suppression. Sixteen signal averages

were used for a total imaging time of 55 min per scan. A saturation pulse was used to

eliminate signal from fat tissue and to delineate boundary of the aortic wall and minimize

chemical shift artifacts. To investigate the plaque targeting of [S]-rHDL, mice were first

subjected to baseline MRI scan, and subsequently injected through tail veins with a 50 μmol

Gadolinium/kg dose of the [Gd-S]-rHDL. The mice were scanned again at 24 hours post-

injection (N=3). Image analysis was done with semiautomatic software (VesselMass,

Leiden) to delineate the aortic lumen area (LA) and outer wall area (OWA). Mean wall area

(MWA) was defined as the difference between LA and OWA. The primary outcome

parameter was the normalized wall index (NWI), which was calculated as: NWI = MWA /

OWA. To evaluate the therapeutic effects of 12 week treatments, mice were scanned with

the same protocol but without the injection of contrast agents.

Ex vivo near infrared fluorescence imaging (NIRF)

The mice were injected through tail veins with Cy5.5-DMPE and DiR labeled [S]-rHDL

(N=3) or saline (N=3). At 24 hours post the injection, mice were sacrificed and perfused

with PBS. To acquire Cy5.5 signal from [S]-rHDL in tissues, aortas, hearts, livers, spleens

and kidneys were collected and imaged with IVIS 200 system (Xenogen) using 675(30) nm

excitation and 720 (20) nm emission filters. Photon counts were used to quantify the

fluorescence intensity from each tissue and it was reflected by color coded scale bar. Images

were processed with the integrated software from IVIS 200 (Living Imaging Software 4.0).

DiR signal was acquired with the same procedure but imaged at 745(30) nm excitation and

820 (20) nm emission filters.

Flow cytometry

To investigated the targeting mechanism of [S]-rHDL, apoE-KO mice were injected with

Cy5.5 and DiO dual-labelled [S]-rHDL at dose of 15 mg/kg simvastatin and 10 mg/kg

ApoA-1, the same as the low dose 12 week [S]-rHDL treatment. Mice were sacrificed at

individual time points post injection (hour 1, 2, 4, 6, 12 and 24; N=3 per time point). Blood

was collected and red blood cells were lysed and removed using red blood cell lysis buffer

(BD Biosciences). Mice were perfused with PBS and cells from aortas were collected using

the same method as described above. After perfusion with 30 ml of PBS, aortas were

collected and the surrounding adipose tissue was removed carefully without damaging the
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adventitia. Aortas were digested with 4 U/ml liberase LH (Roche), 0.1 mg/ml DNase I

(Sigma-Aldrich), and 60 U/ml hyaluronidase (Sigma-Aldrich) in HBSS at 37°C for 90 min.

The suspension was incubated with a mixture of monoclonal antibodies for 30 min at 4 °C.

Fluorescence was detected by flow cytometer (BD Biosciences LSR II), and the data were

analyzed using FlowJO software (Tree Star). Macrophages from aortas were identified as

CD45+, CD11b+ and F4/80+, and monocytes were identified as CD45+, CD11b+, SSC-A

low cells. Based on the Gr-1 expression, monocytes in the blood were further identified as

Gr-1hi and Gr-1lo monocytes. To quantify the delivery efficiency to monocytes,

macrophages and neutrophils in the spleen, a recently reported protocol was used4. Briefly,

splenocytes were released by homogenizing the spleen and the tissue was digested with

collagenase (Sigma-Aldrich) for 30 min at 37°C. A cocktail of antibodies include a Pacific

blue-conjugated lineage (CD90 (clone 53-2.1), B220 (clone RA3-6B2), CD49b (clone

DX5), NK1.1 (clone PK136), Ly-6G (clone 1A8) and Ter-119 (clone TER-119)), Alexa700

conjugated CD11b (clone M1/70), APC-conjugated CD11c (clone HL3), PE-Cy7

conjugated F4/80 (clone BM8) and PE-conjugated Ly6C (clone AL-21). Neutrophils were

identified as Lineage high, CD11b high, ly-6c intermediate and SSC-A high. Macrophages

were identified as lineage -, CD11b high, and F4/80 +. Monocytes were identified as

Lineage -, CD11b high, CD11c −, F4/80 −, and Ly-6C +. Based on Ly-6c expression levels,

monocytes were further identified as Ly-6c high and Ly-6c low monocytes. All antibodies

were purchased from eBioscience, BD Biosciences and Biolegend and 1:200 dilution was

used.

Fluorescence quantification of blood components

ApoE-KO mice received dual-labeled [S]-rHDL (Cy5.5 and DiO) through tail veins

injection. At each individual time point (hour 1, 2, 4, 6, 12 and 24; N=3 per time point),

mouse blood was drawn by cardiac puncture and stored in EDTA containing tubes. 500 μl

blood was used for separating different compartments with Histopaque (Sigma-Aldrich,

Histopaque 1077) by following the instructions from the manufacturer. Briefly, the blood

and Histopaque solution was centrifuged at room temperature for 30 minutes, and three

compartments from the blood (serum; mononuclear cells; red blood cells and granulocytes)

were visible and collected. 50 μl solution from each compartment was added to 96-well plate

(3 repeats for each condition). The plate was imaged with IVIS 200 system (Xenogen). To

image DiO, excitation filter of 465 (30) nm and emission filter of 520 (20) nm were used. To

image Cy5.5, excitation filter of 675 (30) nm and emission filter to 720 (20) nm were used.

Signal intensity was analyzed and quantified using the integrated software from the system

(Living Imaging Software 4.0).

Immunohistochemistry and image quantification

Serial 6 μm thick cross-sections were made of the aortic sinus area on a cryotome (Reichert

HistoStat, Cryostat Microtome). From the first cross-section in which the leaflets of the

aortic valves appeared upward, 63 serial cross-sections were obtained, covering the entire

aortic sinus area. Of every 3 consecutive cross-sections, they were subjected to anti-CD68

immunohistochemical staining, hematoxylin phloxine saffron (HPS)-staining, and Oil Red

O-staining. HPS (HPS, polyscientific) and Oil Red O-staining (Fisher Scientific) were done

with standard methods. Anti-CD68-staining was done with a protocol previously reported37.
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The sections were blocked with rabbit serum (Vectorlabs), incubated for 1 hour with rat

anti-mouse CD68 primary antibody (Abdserotec, 1:250 dilution), 10 minutes with

biotinylated rabbit anti-rat antibody (Vectorlabs, 1:200 dilution), thereafter 5 minutes with

VECTASTAIN ABC-alkaline phosphatase solution (Vectorlabs), and finally for 17 minutes

with Vector Red solution (Vectorlabs).

All cross-sections were digitally imaged with a Nikon eclipse E400 microscope, with a 10x

eyepiece and 10x lenses, a Nikon DS-U1 camera box and Nikon DS-5M camera. We used

NIS-Elements F3.0 software, and imaged at a 1/350s exposure time, 2560 × 1920 pixels, and

pixel size of 1.46 μm2/ pix. Software written in Matlab was developed to facilitate

automated image analysis.

Treatment protocol

For the 12 weeks of treatment study, 6 week old male apoE-KO mice were fed a high

cholesterol diet (ResearchDiets, NJ) for 14 weeks, and subsequently received 12 weeks of

intravenous injection of [S]-rHDL (15 mg/kg simvastatin, 10 mg/kg ApoA-1, 2 injections/

week, N=16), intravenous injection of rHDL (10 mg/kg ApoA-1, 2 injections/week, N=16),

orally administered simvastatin (15 mg/kg/day, 2 saline intravenous injections/week, N=15)

and placebo (2 saline injections/week, N=15). Mice were kept on a high fat diet during the

12 weeks treatment. Another group of mice (N=12) were sacrificed when the other groups

started their 12 week treatment to establish a baseline. 8 mice per group were imaged with

MRI over abdominal aortas before, in the middle and by the end of the 12 weeks treatments.

For one week short-term treatment study, 6 week old male apoE-KO mice were fed a high

cholesterol diet for 27 weeks. After the diet, mice were injected intravenously with high

dose [S]-rHDL (60 mg/kg simvastatin, 40 mg/kg ApoA-1, 4 injections /week), high dose

rHDL (40 mg/kg ApoA-1, 4 injections /week), low dose [S]-rHDL (15 mg/kg simvastatin,

10 mg/kg ApoA-1, 4 injections /week) or placebo (4 saline injections/week).

Laser capture microdissection and qRT-PCR

36 male apoE KO mice with 6 weeks were fed a high fat diet for 26 weeks to develop

advanced atherosclerosis. The animals received one week treatment of high dose [S]-rHDL

(4 i.v. infusions of 60 mg/kg statin, 40 mg/kg ApoA1, denoted as “high [S]-rHDL), rHDL (2

i.v. infusions of 10 mg/kg ApoA1, denoted as “rHDL”), oral statin treatment (15 mg/kg/day

oral simvastatin, denoted as “Oral SVS”), rHDL plus oral statin (15 mg/kg/day oral

simvastatin and 2 i.v. infusions of 10 mg/kg ApoA1, denoted as “rHDL + Oral SVS”), or

placebo (4 i.v. injections of PBS). Sections from aortic roots are prepared as described

above, and a total of 24 sections were made per animal. For every 8 consecutive sections,

the first one was stained with CD68 with the same method described above and used as the

guiding section. The other 7 sections were used for isolating macrophages using laser

capture microdissection (LCM) as previously described35. Briefly, the sections were fixed in

70% ethanol for 1 min, washed in H2O, stained with Mayer’s hematoxylin (VWR Scientific)

for 1 min, washed in H2O, incubated in PBS (to develop blue color) for 15 seconds, washed

in H2O, partially dehydrated in 70% followed by 95% ethanol, stained in eosin Y (VWR

Scientific) for 5 seconds, washed in 95% ethanol, and completely dehydrated in 100%
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ethanol (30 seconds), xylene (30 sec) and xylene (5 minutes). After air-drying for 10 min,

macrophages were identified under a microscope and be verified by the CD68 staining on

the guiding slides. Several hundred macrophages per mouse were collected, and these

macrophages from each animal were used to extract and amplify RNA with WT-Ovation

Pico RNA amplification system (NuGen). The quality of extracted RNA was measured by

Agilent 2100 Bioanalyzer. Quantitative Reverse Transcriptase PCR (qRT-PCR) was

performed on samples using the iScript cDNA Synthesis kit (Bio Rad) according to

manufacturer’s protocol. The mRNA expression levels of investigated genes were

normalized to housekeeping gene hprt1 (UniGene ID: Mm.1037830). The following genes

were investigated: MCP-1 (Mm.290320), CCL-3 (Mm.1283), ICAM-1 (Mm.435508),

VACM-1 (Mm.440909), CXCL12 (Mm.303231), CCL15 (Mm.284348), TNF-α (Mm.

1293), IL-1β (Mm.222830), IL-1α (Mm.15534), Spp1 (Mm.288474), MR (Mannose

Receptor, Mm2019). TaqMan Gene Expression assay (Life Technologies, Cat. NO.

4331182) was used to measured the gene expression on sequence detection device (ABI

PRISM 7900HT).

Fluorescence molecular tomography with CT

Eleven 6 week old apoE-KO mice were fed a high fat diet for 20 weeks before receiving 4

high dose [S]-rHDL or placebo (PBS) injections in a week. Five nmol of pan-cathepsin

protease sensor (ProSense 680, PerkinElmer, Cat# NEV10003) was intravenously

administered along with the last intravenous injection of [S]-rHDL or PBS. 24 hours later

the animals were placed in a custom-built imaging cartridge which was equipped for

isoflurane administration during imaging. Animals were first scanned with high-resolution

computated tomography (CT; Inveon PET-CT, Siemens), with a continuous infusion of CT-

contrast agent (isovue-370, Bracco Diagnostics) at a rate of 55 μl/min through a tail-vein

catheter. Animals were subsequently scanned with an FMT scanner (PerkinElmer) in the

same cartridge. The CT x-ray source with an exposure time of 370–400 ms was operated at

80kVp and 500 μA. Contrast-enhanced high resolution CT images were used to localize the

aortic root, which was used to guide the placement of the volume of interest for the

quantitative FMT protease activity map. The CT reconstruction protocol involved bilinear

interpolation, used a Shepp-Logan filter, and scaled pixels to Hounsfiled units. Image fusion

relied on fiducial markers and used Osirix software (The Osirix Foundation, Geneva).

Blood tests and lipoprotein analysis

After 4 hours of fasting, whole blood was collected in EDTA containing tube. Some serum

was subjected to a biochemistry panel (ALX laboratories, NY) analysis to determine the

blood concentrations of alanine transaminase, aspartate transaminase, creatinine, creatine

kinase, cholesterol and triglyceride. The rest serum was pooled per group for lipoprotein

analysis via fast performance liquid chromatography (FPLC) (Pharmacia). For each sample,

250 μl of plasma was applied to 2 Superose 6 columns (GE healthcare) equilibrated and run

in a buffer containing 150 mM NaCl and 15 mM EDTA in deionized water. The column

flow rate was 0.7 mL/min. 80 fractions were collected, and the total cholesterol

concentration of each fraction was assessed by enzymatic colorimetric assay (Wako)

according to the manufacturer’s instructions.
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Cholesterol measurement in thoracic aorta

The thoracic aortas were blotted dry and weighed. Later, they were minced and extracted

with chloroform/methanol (2:1) according to the method of Folch et al.36 The cholesterol

containing supernatant was measured (WACO diagnostics) and the total cholesterol from the

aortas was calculated accordingly. Finally, the ratio of cholesterol to tissue was calculated

by dividing the total cholesterol content per aorta by the weight of the aorta.

Statistics

Continuous variables are expressed as means ± standard deviation, unless otherwise stated.

Significance of differences was calculated by use of the nonparametric Mann-Whitney U

tests and Kruskal-Wallis tests. Multiple linear regression analysis was used to assess the

association between CD68 area and the various treatment groups, with CD68 area as the

response variable and treatment group as the explanatory variable, adjusting for the potential

confounder serum total cholesterol. Composite variables were calculated for monocyte

recruitement and pro-inflammatory mRNA expression in the LCM experiment. Probability

values of P<0.05 were considered significant. Statistical analyses were done using SPSS

(Statistical Package for the Social Sciences) version 17.0 and SAS package (SAS Institute

Inc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the study design
(a) The targeting dynamics, targeting mechanism and anti-inflammatory action of [S]-rHDL in apoE-KO mice were investigated

by analyzing the dynamics of phospholipids and hydrophobic cargos of [S]-rHDL in the blood by NIRF and flow cytometry.

The biodistribution was evaluated in organs with NIRF. (b) Magnetic resonance imaging (MRI), near infrared fluorescence

imaging (NIRF), fluorescence microscopy, and flow cytometry were used to validate the plaque macrophage targeting efficiency

of [S]-rHDL. The effect of [S]-rHDL on the mRNA levels of inflammatory genes of plaque macrophages were determined in

macrophages isolated with laser capture microdissection. Fluorescence molecular tomography and computed tomography was

used to assess the effect of [S]-rHDL on inflammatory protease activity in aortic root plaques. (c) The efficacy of low-dose long-

term (12 weeks) [S]-rHDL treatment on disease progression was evaluated in the abdominal aortas with MRI and in aortic roots

with histology. (d) The efficacy of high-dose short-term (1 week) [S]-rHDL treatment was evaluated in aortic roots with

histology.
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Figure 2. Schematic representations of the nanoparticle formulations and in vitro efficacy data
(a) Schematic representation of dual gadolinium and fluorescent dye (Cy5.5, DiO, DiR) labeled statin containing reconstituted

high density lipoprotein ([Gd-dye-S]-rHDL), statin containing rHDL ([S]-rHDL), and rHDL. Negative staining transmission

electron microscopy (TEM) images of each of the aforementioned particles showed the typical disk-like morphology. The

circular shapes are nanoparticles viewed en face, while the striped configurations are rouleaux of nanoparticles viewed from the

side. Dynamic light scattering measurements showed the average size of [Gd-dye-S]-rHDL to be 28.5 nm, of [S]-rHDL to be

26.0 nm and of rHDL to be 10.5 nm. For larger view TEM also see Supplementary Fig. S1. (b) In vitro cell viability assays of

murine macrophages (J774A.1), incubated with combinations of [S]-rHDL (10 μM statin) free simvastatin (10 μM), rHDL plus

free statin (10 μM), free statin (10 μM) plus mevalonate (100 μM), [S]-rHDL (10 μM) plus mevalonate (100 μM), and only

mevalonate (100 μM). There was also a control group of cells not incubated with anything. Macrophage cell viability is

markedly decreased in the [S]-rHDL and free statin group. This effect is abolished by addition of mevalonate, indicating that the

effect of HMGR inhibition on cell viability is mediated through the mevalonate pathway. N=6 for all bars. (c) Production of the

inflammatory cytokines MCP-1 and TNF-α. LPS and INF-γ challenged macrophages were incubated with the same treatments

as mentioned above for 24 hours. MCP-1 and TNF-α levels are markedly reduced by [S]-rHDL and free statin. MCP-1 and

TNF-α levels are restored by the addition of mevalonate to [S]-rHDL and free statin incubation. N=6 for all bars. Cell viability

in the different groups was not affected under these conditions (Supplementary Fig. S4). All error bars are 95% confidence

intervals. P-values are calculated with Mann-Whitney U tests for comparisons with [S]-rHDL, * indicates P < 0.05, ** indicates

P < 0.01. Kruskal-Wallis P-values are < 0.0001 for all plots.

Duivenvoorden et al. Page 20

Nat Commun. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Pharmacokinetics and accumulation in plaque of labeled nanoparticles
(a) Cy5.5- and DiO-labelled [S]-rHDL was intravenously injected to apoE-KO mice (N=21, 3 mice per time point) and blood

and tissues were analyzed at different time points post-injection. NIRF shows that components from the lipid monolayer (Cy5.5)

have much shorter blood half-life than components from hydrophobic core (DiO). It also shows that the majority of [S]-rHDL

stays in serum and very little in red blood cells (RBC) and mononuclear cells (MNC). (b) Fluorescence intensity in serum,

MNC, and RBC is quantified (N=21, 3 mice per time point). We calculated that plasma half-life of [S]-rHDL to be 21.9 hours

for the DiO signal. (c) Flow cytometric analysis of blood cells shows that [S]-rHDL targets Gr-1hi pro-inflammatory monocytes

more efficiently than Gr-1lo anti-inflammatory monocytes in blood (N=21, 3 mice per time point). (d) Typical T1-weighted 9.4

Tesla magnetic resonance images of the abdominal aorta of an apoE-KO mouse, made at identical locations, before and 24 hours

after injection of [Gd-Dye-S]-rHDL. The lumen is indicated by *. The scale bar in the upper images represent 10 mm, and in the

lower images 1 mm. The 24h post-injection image showed signal enhancement in the vessel wall (white arrows), indicative of

nanoparticle infiltration and retention in the aortic plaques. (e) [S]-rHDL labeled with Cy5.5 (lipid monolayer) and DiR

(hydrophobic core) was intravenously injected to apoE-KO mice. NIRF shows that Cy5.5 and DiR preferentially accumulates in

the areas rich with atherosclerotic lesions. The scale bar represent 10 mm. (f) Cy5.5 and DiO both appear in the plaque, until 4

hours post-injection the presence of Cy5.5 declines while DiO remains present. The scale bar represents 500 μm. (g) DiO-

labelled [S]-rHDL co-localizes in the plaque with CD68 (macrophages). The scale bar in the inset represent 100μm, and in the

overview 400 μm (h) Flow cytometric analysis of cells in aorta walls shows that [S]-rHDL is taken up by plaque macrophages,

furthermore, macrophages are targeted more efficiently than monocytes (N=3 per timepoint). All error bars are standard errors

of the mean.

Duivenvoorden et al. Page 21

Nat Commun. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. In vivo efficacy of 12 weeks biweekly low dose [S]-rHDL infusions
(a) Efficacy of [S]-rHDL on abdominal atherosclerosis quantified by 9.4 Tesla magnetic resonance imaging (9.4T-MRI).

Typical T1-weighted MR images of the abdominal aortas of mice in each group at all time points show the thickening of the

aorta wall in all groups except in the [S]-rHDL-treated group. The analysis method of the images is shown in Supplementary

Fig. S9. The scale bar represents 1 mm. (b) MRI scans of the abdominal aortas of 32 mice (N=8 per group) were performed at

three time points during the study. When the apoE-KO mice were 14 weeks on high cholesterol diet the baseline scans were

acquired and subsequent scans were performed 6 and 12 weeks after the baseline scan. From baseline onwards the mice received

placebo, oral statin therapy, or injections of reconstituted high-density lipoprotein (rHDL) or statin containing rHDL ([S]-

rHDL). Thickness of the vessel wall is expressed as the normalized wall index (NWI), which is defined as the ratio between the

mean wall area and the outer wall area. (c) Efficacy of [S]-rHDL assessed by histology shows that mean plaque area was lower

in the [S]-rHDL treated group (N=15) as compared to placebo (N=16) and rHDL (N=16), and there was a trend towards

decreased plaque area compared to statin therapy (N=15). Kruskal-Wallis P-value for plaque area is 0.0011. (d) Plaque

macrophage content as measured by the CD68 positive area was decreased in the [S]-rHDL group (N=15) as compared to

placebo- (N=16), statin- (N=15) and rHDL-therapy (N=16), indicating decreased plaque inflammation in the [S]-rHDL group.

Bars represent the standard error of the mean, P-values were calculated with Mann-Whitney U tests. Kruskal-Wallis P-value for

CD68 area is 0.0001. (e) Typical histology images of the aortic sinus area of each group are shown. The hematoxylin phloxine

saffron (HPS)-stained images are shown on the left and the cross-sections stained with CD68 antibodies are shown on the right.

The analysis method of the histology images is shown in Supplementary Fig. S9. The scale bar represents 400 μm.
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Figure 5. In vivo efficacy of a single week high dose [S]-rHDL infusions
(a) Mean plaque area was lower in the high dose [S]-rHDL-treated group (N=10) as compared to placebo (N=15), high dose

rHDL (N=8), and low dose [S]-rHDL(N=10). Kruskal-Wallis P-value for plaque area is 0.037. (b) Plaque macrophage content

as measured by the CD68 positive area was decreased in the high dose [S]-rHDL (N=10) as compared to placebo (N=15), high

dose rHDL (N=8), and low dose [S]-rHDL (N=10), indicative of decreased plaque inflammation in this group. Bars represent

the standard error of the mean, P-values were calculated with Mann-Whitney U tests. Kruskal-Wallis P-value for CD68 area is

0.0006. (c) Typical histology images of the aortic sinus area from a mouse in the placebo group and a mouse in the high dose

[S]-rHDL-group show that mean plaque area is similar, while the plaque macrophage content is notably smaller in the [S]-

rHDL-group. The hematoxylin phloxine saffron (HPS)-stained images are shown on the left and the cross-sections stained with

CD68 antibodies are shown on the right. The scale bar represents 400 μm. (d) One-week high dose [S]-rHDL treatment (N=6)

significantly reduced the mRNA expression levels of monocyte recruitment genes (composite variable of MCP-1, CCL-3,

ICAM-1, VCAM-1, CCL-15, CXCL-12) and pro-inflammatory genes (composite variable of TNF-α, IL-1β, IL-1α, SPP-1) of

plaque macrophages in the aortic root when compared to placebo (N=6) and oral statin (N=6). The expression of the anti-

inflammatory mRNA level (MR) was increased in the high dose [S]-rHDL group as compared to placebo, but not compared to

oral statin therapy. P-values are calculated with Mann-Whitney U tests for comparisons with [S]-rHDL, * indicates P < 0.05, **

indicates P < 0.01. Kruskal-Wallis P-values are shown in the plot. The error bars represent the standard deviations. (e) FMT-CT

molecular imaging of protease activity revealed that high dose [S]-rHDL treatment (N=6) significantly reduced the

inflammation levels in the aortic roots of live apoE-KO mice with advanced atherosclerosis as compared to placebo (N=5). The

yellow circles indicate the aortic root area. The error bars represent the standard error of the mean. P-values were calculated with

the Mann-Whitney U test.
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