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6 Department of Surgery, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden, 7 Department of Clinical Sciences, Hypertension & Cardiovascular Disease, Clinical
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Abstract

Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to
regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify
responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL
($80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from
Ldlr2/2Apob100/100Mttpflox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-
complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with
regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike
those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial
infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets
revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific
master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the
specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis
regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered
the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with
early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to
enhance PCL-mediated regression of mature and advanced atherosclerotic lesions.
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Introduction

Atherosclerosis, primarily in coronary artery disease (CAD) or

carotid stenosis, is the main cause of myocardial infarction (MI)

and stroke, which together are responsible for more than 50% of

deaths worldwide [1]. Although the extent of atherosclerosis in the

arterial bed is an unreliable marker of risk for future events,

advanced atherosclerotic plaques are present in nearly all cases of

MI and in most cases of stroke. It is therefore important to prevent

early harmless atherosclerotic lesions from progressing to rupture-

prone plaques, and if possible, to induce regression of advanced

atherosclerosis into more stable forms [2].

Drugs that lower LDL cholesterol, such as statins, slow

atherosclerosis progression and reduce morbidity and mortality
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from MI and stroke by 30–45% [3–5]. More potent statin

regimens can even cause atherosclerosis regression [6–8] but

sometimes have severe side effects. Although statins and lifestyle

changes reduce the risk for secondary cardiovascular events [9],

mortality from MI and stroke are still increasing [1]. About 10% of

persons at increased risk for CAD/MI have elevated plasma

cholesterol levels, making them eligible for primary statin

treatment. The extent to which plasma cholesterol lowering

(PCL) benefits healthy persons who are at increased risk for CAD/

MI and have relatively normal plasma LDL-cholesterol levels is

unclear [10,11]. Vulnerable atherosclerotic lesions may respond

better to PCL (i.e., leading to regression and more stable plaques)

in some cases than in others, depending on inherited genetic and

environmental co-factors within the plaque. In part, these factors

are likely reflected in gene expression patterns within the plaque

[12]. A better understanding of such changes in response to PCL

at different stages of plaque development is necessary to define key

genes that in themselves or in parallel with PCL help improve

atherosclerosis regression.

To effectively study atherosclerosis regression, the use of animal

models is required. In earlier studies of atherosclerosis regression,

mainly mouse models were used. Among these models were

wildtype normolipidemic mice transplanted with atherosclerotic

arterial segments from Apoe2/2 mice [13–18], Apoe2/2 mice

treated with apoE-encoding adenoviral vectors [19], Ldlr2/2 mice

treated with an microsomal triglyceride transfer protein (MTP)

inhibitor [20], and mice that have a plasma lipid profile similar of

that of hypercholesterolemia (Ldlr2/2Apob100/100) and a genetic

switch to block hepatic synthesis of lipoproteins and thereby lower

plasma lipoproteins (Mttpflox/floxMx1-Cre) [21–23]. These studies

established that PCL leads to atherosclerosis regression. mRNA

profiling of atherosclerotic lesions before and after regression led to

the identification of several candidate target genes that may

mediate atherosclerosis regression after PCL.

However, some important aspects of atherosclerosis regression

were overlooked in these studies [13–23]. First, the main focus was

to identify individual atherosclerosis genes. In contrast, we believe

that mRNA profiles are best interpreted by inferring groups of

functionally linked genes in disease networks [24,25]. Another

concern relates to the interpretation of molecular changes

(reflected by gene expression) in atherosclerotic lesions before,

during, and after regression. Typically, atherosclerosis regression

candidate genes were identified by comparing mRNA profiles of

lesions isolated before and after regression. In our experience,

most genes identified in this fashion reflect morphological changes

in the atherosclerotic plaque, such as shrinking of the lesion and

alterations in the relative cell type composition. Such changes are

likely a response to, but not a cause of, atherosclerosis regression.

Finally, in a study of gene expression patterns during atheroscle-

rosis progression [12], we observed that the extent of gene

expression changes in the atherosclerotic lesions drastically

expands and varies as atherosclerosis progresses. Thus, it is highly

likely that gene targets to improve PCL-mediated atherosclerosis

regression will vary with the stage and severity of the lesions.

In this study, we identified PCL-responsive atherosclerosis genes

and their interactions in networks before regression at three stages

of atherosclerosis development. We then compared these genes

with those responding to the atherosclerosis itself. Specifically, we

analyzed the extent, composition, and mRNA profiles of early,

mature, and advanced atherosclerotic aortic lesions from Ldlr2/2

Apob100/100Mttpflox/floxMx1-Cre mice [22] immediately before and

after Cre-induced PCL and at 10 and 20 weeks after PCL.

Results

Study Mice and PCL
To study regression of atherosclerosis at different stages, we

lowered plasma lipoprotein levels in Ldlr2/2Apob100/100Mttpflox/

floxMx1-Cre mice by recombining the floxed gene (Mttpflox/flox) [26]

with polyinosinic-polycytidylic acid (pI-pC) injections after 30, 40,

and 50 weeks of atherosclerosis progression (i.e., age of the mice).

pI-pC injections in Mttpwt/wtMx1 mice do not affect plasma

cholesterol levels or transcriptional activity in the arterial wall [12].

After recombination of microsomal triglyceride transfer protein

(Mttp), plasma total cholesterol levels were reduced by 80–95%,

HDL-cholesterol 50–60% and, triglyceride levels by 40–60%;

plasma glucose levels were generally unaffected (Table 1 and

Table S1). Plasma cholesterol (both total and HDL) and

triglyceride levels were reduced to similar levels in mice with

early (week 30), mature (week 40), and advanced (week 50) lesions,

and remained at these levels throughout the regression study

period (10 and 20 weeks after Mttp recombination; Table 1 and

Table S1). In littermate Ldlr2/2Apob100/100Mttpflox/floxMx1-Cre

mice injected with PBS (controls) and sacrificed at 20, 30, 40, 50,

and 60 weeks, plasma cholesterol and triglyceride levels were

unaffected (Table 1). Since Mttp recombination primarily affected

plasma cholesterol levels (e.g., LDL-cholesterol), we will refer to

plasma lipid lowering as PCL.

Regression Responses to PCL at Different Stages of
Atherosclerosis Progression

The extent of atherosclerosis progression and regression was

assessed by en face analysis of the lesion surface area of pinned-out

aortic trees stained with Sudan IV. Early lesions in the aortic arch

were small and had distinct borders (Figure 1A and 1B). Mature

and advanced lesions were substantially larger but still had distinct

borders, with small lesions appearing in the ascending aorta.

Atherosclerosis regression occurred at all lesion stages after

PCL. In mice with early lesions (30 weeks), PCL led to near-

complete regression after 20 weeks (Figure 1A and 1B), from 4.3%

of surface area to 0.5% (down by 88%) (P = 0.0003). However, in

Author Summary

The main underlying cause of heart attacks and strokes is
atherosclerosis. One strategy to prevent these often deadly
clinical events is therefore either to slow atherosclerosis
progression or better, induce regression of atherosclerotic
plaques making them more stable. Plasma cholesterol
lowering (PCL) is the most efficient way to induce
atherosclerosis regression but sometimes fails to do so.
In our study, we used a mouse model with elevated LDL
cholesterol levels, similar to humans who develop early
atherosclerosis, and a genetic switch to lower plasma
cholesterol at any time during atherosclerosis progression.
In this model, we examined atherosclerosis gene expres-
sion and regression in response to PCL at three different
stages of atherosclerosis progression. PCL led to complete
regression in mice with early lesions but was incomplete in
mice with mature and advanced lesions, indicating that
early prevention with PCL in individuals with increased risk
for heart attack or stroke would be particularly useful. In
addition, by inferring PCL-responsive gene networks in
early, mature and advanced atherosclerotic lesions, we
identified key drivers specific for regression of early
(PPARG), mature (MLL5) and advanced (SRSF10/XRN2)
atherosclerosis. These key drivers should be interesting
therapeutic targets to enhance PCL-mediated regression
of atherosclerosis.

Cholesterol-Responsive Regression Gene Networks
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mice with mature lesions (PCL at 40 weeks) and advanced lesions

(PCL at 50 weeks), regression was substantial but never complete.

During the first 10 weeks of PCL, mature lesions shrank from

12.6% to 4.1% of surface area (P = 561025) and advanced lesions

from 15.2% to 6.2% (P = 761027). During the last 10 weeks of

PCL, however, there was little further regression. Mature lesions

shrank from 4.1% to 3.5% of surface area (P = 0.6) and advanced

lesions from 6.2% to 6.0% (P = 0.8) (Figure 1A and 1B). Thus,

after 10 weeks of PCL, mature and advanced lesions became

resistant to PCL, whereas early lesions continue to regress.

Plaque Composition after Regression
Although regression of the extent of atherosclerosis (atheroscle-

rosis burden) increases plaque stability as reflected by the cellular,

collagen, and lipid composition of the plaque, compositional

changes do not always parallel changes in atherosclerosis burden.

Therefore, we compared the histological features of aortic root

sections isolated before and 10 and 20 weeks after PCL (Figure 2).

Over 20 weeks of regression, the most robust changes in plaque

composition were in neutral lipids identified by Oil-Red-O

staining (Figure 2A) and in the percentage of lesion macrophages

identified by staining for CD68 (Figure 2B). Oil-Red-O staining

decreased from 5.6% to 2.7% of surface area in early lesions, from

12.6% to 5.1% in mature lesions, and from 22.6% to 5.1% in

advanced lesions (all P,0.001). Similarly, the percentage of lesion

macrophages decreased from 5.1% to 0.2% in early lesions, from

7.1% to 0.5% in mature lesions, and from 10.3% to 0.8% in

advanced lesions (all P,0.001). In early lesions, the extensive

reduction in the percentage of macrophages (5.1% to 0.2%) was

paralleled by near-complete regression after 20 weeks of PCL

(Figure 1A). Of note, between weeks 10 and 20 of PCL, the

percentage of macrophages in advanced lesions decreased from

2.5% to 0.8% (P,0.05) despite no further reduction in the extent

of lesions (Figure 1A).

In early lesions, PCL increased the collagen content by 80–

130% (P,0.01 at 10 and 20 weeks). In mature lesions, the collagen

content was unaffected by PCL. In advanced lesions, collagen

content decreased by about 30% 10 weeks after PCL (P,0.05) and

remained at this level at 20 weeks. The pattern of changes in the

lesion content of smooth muscle cells (SM22a-positive) was similar

to that of collagen content; however, owing to higher variation,

none of these changes were statistically significant (data not

shown).

Plaque Stability after Regression
To assess how changes in lesion composition after atheroscle-

rosis regression alter plaque stability, we calculated a stability

score: (SM22a+collagen areas)/(CD68+Oil-Red-O areas) [27].

Since this score indicates stability for each plaque and does not

consider the total risk for plaque rupture in a given mouse, the

plaque score was divided by the total atherosclerosis burden/

mouse (i.e., lesion surface area). The resulting stability scores

decreased during atherosclerosis progression and increased during

regression (Figure 2D).

Early lesions showed the greatest improvement in plaque

stability score, which was 17-fold higher after 10 weeks of

regression (from 1.3 to 24, P,0.001) and 54-fold higher after 20

weeks (1.3 to 72, P,0.001). In comparison, after 20 weeks of

regression, plaque stability scores had increased only 13-fold in

mature lesions (0.5 to 6.6, P,0.001) and 11-fold in advanced

lesions (0.3 to 3.4, P,0.001). Clearly, plaque stability is generally

improved by PCL-induced regression; however, in mice with

mature and advanced lesions, the baseline score was substantially

lower and the improvement much less than in mice with early

lesions. Thus, the greatest gain in plaque stability is achieved by

PCL in mice with early lesions.

Gene Expression Profiling of Atherosclerosis Regression
For mRNA profiling studies, PCL was again induced in mice

with early (30 weeks), mature (40 weeks), and advanced (50 weeks)

lesions. Atherosclerotic aortic arch was isolated for RNA isolation

immediately before and after PCL and after 10 weeks of

regression. Affymetrix arrays (Mouse Gene 1.0 ST) were used

for mRNA profiling.

First, to assess atherosclerotic arterial wall genes that respond to

the PCL before atherosclerosis regression (i.e., the PCL-responsive

gene set), we compared mRNA profiles immediately before and

after PCL (Figure 3A, Tables S2, S3, S4). Since the time between

‘‘immediately before and after PCL’’ is about 1 week, we observed

no morphological changes in the lesion composition, including the

percentages of different cell types. As a consequence, the PCL-

responsive gene sets represent genes with primary changes in their

Table 1. Plasma cholesterol, triglyceride and glucose
concentrations in the study mice at sacrifice.

Plasma levels (mg/dl)

Time point Before PCL After PCL for

1 week 10 weeks 20 weeks

20 weeks

Cholesterol 220629

Triglycerides 85.2618

Glucose 407686

(n = 8)

30 weeks

Cholesterol 254638 55.0634*** 11.065.3*** 33.7626***

Triglycerides 76.5610 48.668.5*** 32.766.1*** 44.3614***

Glucose 394678 310691 335648* 354660

(n = 6) (n = 6) (n = 20) (n = 9)

40 weeks

Cholesterol 264691 64.9632*** 17.4612*** 24.1611***

Triglycerides 72.5610 38.9613*** 38.668.6*** 62.1625

Glucose 3776134 293685 358669 407676

(n = 6) (n = 5) (n = 20) (n = 9)

50 weeks

Cholesterol 226648 47.9621*** 19.269.5*** 18.964.6***

Triglycerides 97.2622 51.3616*** 36.8610*** 41.165.4***

Glucose 373664 324694 336672 3006120

(n = 9) (n = 12) (n = 25) (n = 10)

60 weeks

Cholesterol 224650

Triglycerides 95.1647

Glucose 3466125

(n = 9)

Values are mean 6 SD.
*P,0.05,
***P,0.001 vs. before PCL.
doi:10.1371/journal.pgen.1004201.t001
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expression levels rather than changes due to alterations in the

cellular composition of the plaque.

Next, to identify atherosclerotic arterial wall genes whose

expression changed during atherosclerosis regression (i.e., regres-

sion-reactive gene sets), we compared mRNA profiles immediately

after PCL and after 10 weeks of regression (Figure 3B, Tables S5,

S6, S7). In contrast to PCL-responsive gene sets, changes in the

expression of many genes in the regression-reactive set likely reflect

changes in the cellular composition of the plaque.

As atherosclerotic lesions develop, their molecular complexity

increases [12]. So it was not surprising that the number of PCL-

responsive genes increased from 261 transcripts (corresponding to

238 mouse genes) in early lesions, to 1752 transcripts (1306 genes) in

mature lesions and to 2702 transcripts (2231 genes) in advanced

lesions (Figure 3A, Figure 4A, Tables S2, S3, S4). Similarly, the

number of regression-reactive genes increased from 50 transcripts

(42 genes) in early lesions, to 1902 transcripts (1556 genes) in mature

lesions, and up to 8569 transcripts (6273 genes) in advanced lesions

(Figure 3B, Figure 4B, Tables S5, S6, S7). These observations

suggest that the PCL responses of the atherosclerotic lesions become

increasingly complex as atherosclerosis progresses and are mirrored

by a greater complexity in the regression response.

Interestingly, the PCL-responsive gene sets were largely unique

at each time point/stage of atherosclerosis; the fraction of unique

genes was 24%, 66%, and 84% in early lesions, mature, and

advanced lesions, respectively (Figure 4A). Of PCL-responsive

genes in early lesions, 68% were uniquely shared with PCL-

responsive genes in mature lesions but only 5% with advanced

lesions (Figure 4A). In contrast, regression-reactive gene sets were

more shared between stages of atherosclerosis progression; all

regression-reactive genes in early lesions were present in the

reactive gene sets of mature and advanced lesions, and 50% of the

reactive gene set in mature lesions was present in advanced lesions

(Figure 4B). Thus, PCL-responsive atherosclerosis genes largely

vary with the stage of atherosclerosis, whereas regression-reactive

genes sets expand as atherosclerosis progresses.

Enrichment of Inherited Risk for CAD/MI of the PCL-
Responsive and Regression-Reactive Gene Sets

Genes that are causally linked to (i.e., that drive or protect against)

a disease typically harbor DNA variants that affect the risk of

developing the disease, whereas genes reacting to a disease typically

do not [25]. To examine the causal relationships of the PCL-

responsive and regression-reactive gene sets to atherosclerosis

regression, we identified single nucleotide polymorphisms (SNPs)

affecting the expression of the human orthologs of those genes (Tables

S8, S9, S10, S11, S12, S13) and determined the extent to which these

expression SNPs (eSNPs) carry more risk for CAD/MI than would be

expected by chance. For this purpose, we used a well-established

genome-wide association (GWA) study of CAD/MI, MIGen [28].

eSNPs affecting the expression of genes in the PCL-responsive

gene sets in early, mature, and advanced atherosclerosis were all

risk-enriched compared to 5000 randomly selected equally sized

sets of SNPs (early, 2.0-fold, P = 3.1610214; mature, 1.4-fold,

P = 6.861024; advanced, 1.5-fold, P = 1.361026). In contrast,

eSNPs affecting the expression of genes in the regression-reactive

gene sets were not (early/mature/advanced, ,1.1-fold, P.0.05).

These results support the notion that PCL-responsive genes are

causally linked to regression of atherosclerosis and that regression-

responsive genes are, as hypothesized, secondary.

PCL-Responsive TF-Regulatory Gene Network of Early
Atherosclerosis

From the standpoint of understanding genes that drive

atherosclerosis regression, genes that respond acutely to PCL

and are risk-enriched for CAD/MI—that is, the PCL-responsive

gene sets of early, mature, and advanced atherosclerosis—were

considered the most interesting.

According to GO analysis of the PCL-responsive gene set of

early lesions (n = 261), the top molecular and cellular function was

lipid metabolism and the top disease category was connective tissue

disorder (Table S14). Next, to investigate the connectivity of the

human orthologs of the PCL-responsive genes of early lesions

(n = 215), we inferred the TF-regulatory gene network by using

mRNA profiles from blood macrophages of CAD patients [29].

Fifty-three of 215 human orthologs belonged to the TF-regulatory

network (Figure 5A, P,0.0051, Table S8). Peroxisome prolif-

erator-activated receptor alpha and gamma (PPARA, PPARG) were

master regulators (highly connected genes) in this network, with 17

and 13 edges, respectively (Table 2).

To validate the PCL-responsive TF-regulatory gene network in

early lesions, including its key master regulators, we used a THP-1

regression model. In brief, THP-1 cells were differentiated into

macrophages in vitro and incubated with acetylated-LDL (Ac-LDL)

to form foam cells. The cells were then treated with siRNA (to silence

the key master regulators) or mock treated (controls) and examined

for effects on the expression levels of network genes and cholesterol-

ester (CE) accumulation. CE levels were assessed from lipids in the

THP-1 foam cells after siRNA silencing of the master regulator and

compared CE levels in mock-treated cells. If CE accumulation

increased, the master regulator was judged to promote atheroscle-

rosis regression. If CE accumulation decreased, the master regulator

was judged to prevent regression. To assess gene expression in THP-

1 foam cells, RNA isolated after silencing was analyzed with an

Agilent Human Custom Gene Expression Microarray; the degree of

silencing of master regulators was assessed by RT-PCR.

When PPARG was silenced, 28% (15/53) of the PCL-responsive

network genes in early atherosclerosis were affected (down- or up-

regulated at a false-discovery rate (FDR),0.1; Table 3 and Tables

S8 and S17). A hypergeometric test (Methods) showed that the

effects of silencing PPARG were specific to the 53 genes in the TF-

regulatory gene network of early lesions (P = 0.020, Table 4). In

the THP-1 foam cell model, CE accumulation increased by 12%

(P = 0.008) after silencing of PPARG (Table 5).

PCL-Responsive TF Regulatory Gene Network of Mature
Atherosclerosis

According to GO analysis of the PCL-responsive gene set

(n = 1752) of mature lesions, the top molecular and cellular

function was lipid metabolism (Table S15) and the top disease

categories were connective tissue disorder and metabolic disease (Table

S15). Next, we investigated the connectivity of these genes by

Figure 1. Atherosclerosis progression in Ldlr2/2Apob100/100Mttpflox/flox mice and regression in Ldlr2/2Apob100/100MttpD/D mice. (A)
Atherosclerosis progression and regression curves. Values are surface lesion area (mean 6 SD), assessed by Sudan IV staining, as a percentage of the
total area of pinned-out aortas. n = 4–10 per time point. Lesion development in controls without PCL (N) (P,0.001 vs. 30 weeks) and in mice after
PCL started at week 30 (m), 40 (&), or 50 ( ). Changes in lesion area between 10 and 20 weeks of low plasma cholesterol were significant only in
mice with early lesions (PCL at 30 weeks, P = 0.05). *P = 0.05, ***P,0.001. (B) Representative aortic trees (above) with magnified arches (below) stained
with Sudan IV before and 10 and 20 weeks after PCL at 30, 40 and 50 weeks. Graphs indicate degree of regression at that PCL time-point (red).
doi:10.1371/journal.pgen.1004201.g001
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Figure 2. Immunohistochemical characteristics of representative frozen sections of aortic roots from Ldlr2/2Apob100/100Mttpflox/flox

and Ldlr2/2Apob100/100MttpD/D mice. (A–C) Average percent stained area of total aortic root area (right) and representative stained aortic roots
(left). Bars indicate SD. Original magnification, 506. *P,0.05, **P,0.01, and ***P,0.001. (A) Oil-Red-O staining (n = 6–9 per group). (B) CD68 staining
(n = 5–8 per group). (C) Sirius Red staining (collagen) (n = 3 per group). (D) Mean plaque stability score (arbitrary units). Bars indicate SD. Average
plaque stability scores were divided by total extent of plaque burden to assess stability per mouse (not individual plaques). Inset: magnifications of
plaque stability score/mouse at 30, 40, 50, and 60 weeks before regression.
doi:10.1371/journal.pgen.1004201.g002
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inferring the TF-regulatory gene network, again using the mRNA

profiles from blood macrophages of CAD patients [29]. Of 1087

human orthologs (corresponding to 1306 mouse genes, Table S9),

185 were part of the inferred TF-regulatory gene network (P,

0.0013, Figure 5B, Table S9, Figure S1). The master regulators of

this network were high mobility group box 2 (HMGB2), adenosine

A2a receptor (ADORA2A), telomeric repeat binding factor 1

(TERF1), and mixed lineage leukemia 5 (MLL5), with 61, 59, 55

and 38 connections, respectively (Table 2).

To validate the PCL-responsive TF-regulatory gene network

and its key master regulators in mature lesions, we again used a

THP-1 foam cell regression model. After silencing of ADORA2A,

31% (58/185) of the mature network genes were affected; after

silencing of both ADORA2A and MLL5, 36% (67/185) were

affected (FDR,0.1, Table 3, Table S9 and Table S17). MLL5 was

the only key master regulator that was specific for the mature

atherosclerosis network according to the hypergeometric test

(P = 0.0059, Table 4). After MLL5 silencing, CE accumulation in

the THP-1 foam cell model increased 21% (P = 0.01, Table 5).

PCL-Responsive TF Regulatory Gene Network of
Advanced Atherosclerosis

According to GO analysis of the PCL-responsive gene set

(n = 2702) in advanced lesions, the top molecular and cellular

functions were protein synthesis and degradation (Table S16) and the

top disease categories were immunological disease and cardiovascular

disease (Table S16). Next, we investigated the connectivity of these

genes by inferring the TF-regulatory gene network, using the same

mRNA profiles from blood macrophages of CAD patients [29]

(Figure 5C). Of 1865 human orthologs (corresponding to 2231

mouse genes, Table S10), 379 were part of the inferred regulatory

gene network (P,0.00042, Figure 5C, Table S10, Figure S2). The

master regulators in this network were serine/arginine-rich

splicing factor 10 (SRSF10), 59-39-exoribonuclease 2 (XRN2), and

HMGB1, with 71, 67, and 62 connections, respectively (Table 2).

In the THP-1 foam cell regression model, silencing of both

SRSF10 and XRN2 affected 22% (83/379) of the advanced

network genes (FDR,0.05, Table 3, Table S10 and Table S17).

Silencing of SRSF10 and XRN2 individually affected 19% and

15%, respectively, of the advanced lesion network genes. Both

SRSF10 and XRN2 were specific master regulators for the

advanced atherosclerosis network (P = 0.035, P = 0.040, respec-

tively, Table 4). In the THP-1 foam cell model, CE accumulation

decreased by 17% (P = 0.0008) after silencing of SRSF10 and by

15% (P = 0.003) after silencing of XRN2 (Table 5).

Discussion

PCL decreases the risk for clinical complications of atheroscle-

rosis, but individual responses vary, from slowing or preventing

further progression to inducing regression. This study of a mouse

model with human-like plasma lipoprotein profile and advanced

atherosclerotic lesions showed that atherosclerosis regression

occurs regardless of the lesion stage at which PCL is induced.

However, as lesions progress, they become increasingly resistant to

PCL. In mice with early lesions, PCL led to a complete regression

and nearly healthy arteries (plaque stability score .70 after 20

weeks of regression). In mice with mature lesions, the regression

was incomplete, leaving plaque remnants that were substantially

smaller but relatively instable (stability score ,10). And in mice

with advanced lesions, the plaque remnants were even less stable

(stability score ,5). Thus, if early atherosclerosis in humans is

equally sensitive to plasma cholesterol levels, patients at increased

risk for CAD and MI would benefit greatly from PCL while their

lesions are still in the early stage.

The increasing resistance to PCL as atherosclerotic plaques

progress suggests that specific molecular processes in atherosclerosis

regulate PCL sensitivity and thus the response to atherosclerosis

regression. We therefore performed mRNA-profiling immediately

before and after PCL to identify PCL-responsive atherosclerosis

genes and examined their interplay in TF-regulatory gene networks.

Consistent with the differences in plaque sensitivity to PCL, plasma

cholesterol-responsive genes in the atherosclerotic arterial wall were

largely different in early, mature, and advanced lesions. In early

lesions, we identified PPARG as a specific master regulator of other

PCL-responsive genes that collectively led to near-complete

regression. In mature and advanced plaques, we identified

nonspecific master regulators (affecting both mature and advanced

PCL-responsive genes in THP-1 foam cells), such as ADORA2A,

HMGB1, HMGB2, and TERF1, as well as specific master regulators

of partial regression in mature lesions (MLL5) and advanced lesions

(SRSF10 and XRN2). In validation studies in THP-1 foam cells,

siRNA targeting individual master regulators either decreased

(SRSF10, XRN2) or increased (PPARG and MLL5) CE accumulation.

These genes are plausible targets to improve PCL-mediated

regression of mature and advanced atherosclerosis.

In studies to validate the inherited risk-enrichment [25] of the

PCL-responsive and regression-reactive gene sets, we found that

only PCL-responsive genes were enriched with inherited risk for

CAD/MI (.1.4-fold, P,6.861024). The causal gene set of early

atherosclerosis was especially risk enriched (2.0-fold,

P = 3.1610214), perhaps indicating that the causal gene set of

early lesions precedes those of mature and advanced lesions and

has a more important role in carrying inherited risk. We [12,25]

and others [24] have shown that molecular processes with key

roles in disease have at least some degree of risk enrichment.

However, genes affected by DNA variants (i.e., eSNPs) might be

Figure 3. Transcriptional profiling during regression of aortic
atherosclerotic lesions in Ldlr2/2Apob100/100Mttpflox/flox and
Ldlr2/2Apob100/100MttpD/D mice over time. Differential expression
analyses was used to define sets of genes causally and reactively related
to atherosclerosis regression in Ldlr2/2Apob100/100MttpD/D mice. RNA for
the transcriptional profiling was isolated from the atherosclerotic aortic
arch. Narrow and bold arrows indicate times of PCL and sacrifice,
respectively. Colored horizontal lines indicate time frame of transcrip-
tional profiles used for differential expression analysis to define gene
sets. Colors indicate when PCL was started: green, 30 weeks; yellow, 40
weeks; red, 50 weeks. (A) To define the PCL-responsive gene sets, we
compared transcriptional profiles (4–6 per time point) of PBS-treated,
high-cholesterol littermate controls sacrificed at 30, 40 and 50 weeks
with those immediately after PCL. (B) To define the regression-reactive
gene sets, we compared transcriptional profiles (3–6 per time point)
immediately after PCL with those at 10 weeks after PCL (10 per time
point).
doi:10.1371/journal.pgen.1004201.g003
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disease relevant despite not necessarily carrying inherited risk.

Thus, some regression-reactive genes are likely important for

atherosclerosis regression despite their lack of enrichment in

inherited risk of CAD/MI. The lack of risk enrichment in the

regression-reactive gene sets does not imply that every gene or

pathway in these sets is irrelevant for atherosclerosis regression.

For example, the regression-reactive gene sets included many

genes in the transendothelial migration of leukocytes (TEML)

pathway that are thought to be important in regression [19].

Interestingly, master regulatory genes did not harbor any

disease-associated eSNPs according to the MIGen GWA dataset

[28], although many other PCL-responsive network genes did.

What is responsible for this difference? One possibility is that SNPs

or mutations in genes that encode key transcription regulatory

proteins (i.e., master regulators) often are deleterious and therefore

are effectively eliminated by natural selection from the gene pool

[30]. In support of this notion, disease risk loci identified by GWA

studies so far have not yet identified key master regulators of lipid

metabolism in CAD, like SREBPs, PPARs and LXR [31,32].

Instead, genes in lipid metabolism that have been identified by

GWA studies, such as PCSK9, ABCG5 and ABCG8 [31,32], are,

to our understanding, important modifiers but not master

regulators.

Although some regression-reactive genes may contribute to

atherosclerosis regression, they did not respond to PCL. Respon-

siveness to PCL, we believe, is key to the atherosclerosis regression

response. Interestingly, PPARG was identified as a PCL-responsive

master regulator of the TF-regulatory network of early lesions.

Recently a study of the same mouse model we used showed that

treatment with pioglitazone (a PPARG agonist) in addition to PCL

improved the inflammatory profile of CD68 cells [21]. Thus, the

PPARG agonist modified the response of the atherosclerotic

arterial wall to PCL. Our validation of stage-specific master

regulators in the foam cell model of regression suggests that MLL5,

SRSF10, and XRN2 will be useful targets for improving athero-

sclerosis regression after PCL in individuals with mature or even

Figure 4. PCL-responsive and regression reactive gene sets of atherosclerosis regression. Venn diagrams showing the percentage/
number of differentially expressed genes at 30, 40, and 50 weeks. The colors of the circles indicate when PCL was started: green, 30; yellow, 40 weeks;
red, 50 weeks. The percentage in the circles to the left represent the percentage of differentially expressed genes for that section and specific time
point. The numbers in circles to the right represent numbers of differentially expressed genes. (A) The PCL-responsive gene sets consist of genes that
responded immediately to PCL, initiating regression of early (30 weeks), mature (40 weeks), and advanced (50 weeks) atherosclerosis. (B) The
regression-reactive gene sets consist of genes altered in lesions between immediately after PCL and 10 weeks of low plasma cholesterol levels.
doi:10.1371/journal.pgen.1004201.g004
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advanced lesions. Studies targeting these genes either genetically

or with drugs in parallel to PCL are warranted.

Atherosclerosis regression after PCL has been investigated in

several mouse models [13–23,33] and the results prompted debate

about the mechanisms of regression. According to a leading

theory, regression is caused by increased macrophage emigration

from the plaque [13,16,18,33]. Another study suggested that the

key mechanism is suppressed migration of leukocytes to the

arterial wall [19]. The notion that monocyte migration is a key

process in regression is supported by our transcriptional profiling

data and immunohistological characteristics of atherosclerosis

regression (loss of CD68-positive cells and decrease in Oil-Red-O

staining). In contrast, we found that expression of chemokine (C-C

motif) receptor 7 (Ccr7) and liver X receptor alpha (Lxr) was

downregulated in response to atherosclerosis regression, not

upregulated (not shown). These findings suggest that deactivation

of TEML pathway genes, rather than increased emigration of

macrophages, is more essential for atherosclerosis regression. In

relation to the PCL-responsive gene sets, the TEML pathway may

be a key event but is activated further downstream, since a

Figure 5. CAD-patient macrophage TF-regulatory coexpression networks of PCL-responsive genes linked to atherosclerosis
regression. To learn more about functional interactions of the PCL-responsive gene sets using human orthologs, we used macrophage mRNA
profiles (n = 38) from patients with CAD [29] to infer TF-regulatory gene networks. Red square nodes are TFs. Yellow square nodes are specific master
regulatory TFs (Table 4): PPARG for the network in early lesions (30 weeks) and MLL5 for the network in mature lesions (40 weeks) and SRSF10 and
XRN2 for the network in advanced lesions (50 weeks). Edges are connections between TFs and their first neighbor. (A) At 30 weeks, 53 genes of 215
human orthologs belonged to the TF-regulatory network (P,0.0051), in which the most connected TFs (master regulators) were PPARA (17 edges)
and PPARG (13 edges) (Table 2). The TF-regulatory network of PCL-responsive atherosclerosis regression genes at 30 weeks is magnified in (D) to
show all nodes. (B) At 40 weeks, 185 genes of 1087 human orthologs in the causal gene set belonged to the TF-regulatory network (P,0.0013). The
most connected TFs were HMGB2, ADORA2A, and TERF1, with 61, 59 and 55 edges, respectively (Table 2). (C) At 50 weeks, 379 genes of 1865 human
orthologs in the causal gene set belonged to the TF-regulatory network (P,0.00042), in which the most connected TFs were SRSF10, XRN2, and
HMGB1, with 71, 67 and 62 edges, respectively (Table 2). (D) A magnification of the TF regulatory network of PCL-responsive genes at week 30, shown
in (A).
doi:10.1371/journal.pgen.1004201.g005

Table 2. Top hubs in the causal TF-regulatory co-expression networks inferred in human macrophages.

Gene symbol Gene name Network Connections

Top hubs week 30

PPARA PPAR alpha 17

PPARG PPAR gamma 13

PDE8A Phosphodiesterase 8A 12

CEBPA CCAAT/enhancer-binding protein alpha 9

HIPK2 Homeodomain interacting protein kinase 9

Top hubs week 40

HMGB2 High mobility group box 2 61

ADORA2A Adenosine A2a receptor 59

TERF1 Telomeric repeat binding factor 1 55

PKIA Protein kinase inhibitor alpha 48

HMGB1 High mobility group box 1 44

Top hubs week 50

SRSF10 Serine/arginine-rich splicing factor 10 71

XRN2 59-39 exoribonuclease 2 67

HMGB1 High mobility group box 1 62

ATF1 Activating transcription factor 1 60

BMI1 BMI1 polycomb ring finger oncogene 59

Common hubs weeks 30 and 40

None

Common hubs weeks 40 and 50 Week 40 Week 50

HMGB1 High mobility group box 1 44 62

HMGB2 High mobility group box 2 61 54

MLL5 Myeloid/lymphoid or mixed-lineage leukemia 5 38 55

TF, transcription factor. Common hubs .5 connections.
doi:10.1371/journal.pgen.1004201.t002
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majority of these genes did not respond to PCL. In addition, our

findings clearly indicate that atherosclerosis regression is too

complex to be explained by changes in TEML activity alone.

Besides migrating and emigrating, macrophages within the

plaque also proliferate, affecting plaque size [34]. Specifically, at a

high turnover rate, lesion macrophages can be replenished by local

proliferation rather than de novo influx of monocytes [34]. How

macrophage proliferation rate is affected (if at all) by PCL at

different stages of atherosclerosis progression is unknown but is

certainly of interest for future studies. Our findings show that

enhancing atherosclerosis regression after PCL will require

targeting regulatory genes at the top of the regulatory hierarchy

(e.g., master regulators) rather than individual effector genes (e.g.,

Ccr7 and Lxr) or specific pathways, such as TEML or cell

proliferation.

Interestingly, even though mature and advanced plaque

remnants became increasingly resistant to PCL-mediated regres-

sion, the number of CD68-positive cells decreased between weeks

10 and 20 of PCL in all plaques. This was most clear in early

lesions, leading to near-complete regression. However, in mature

plaques, and particularly in advanced plaques, despite a substan-

tial decrease in CD68-positive cells between weeks 10 and 20,

lesion size was mainly unaffected. Over this period, the plaque

stability scores improved, but it is difficult to interpret the

underlying biology of these changes. One plausible explanation

is that macrophage death (necrosis) is responsible for the reduction

of CD68-positive cells in advanced plaques; the lack of change in

plaque size would reflect a larger necrotic core despite the lower

number of macrophages. Another plausible explanation is that

there are fewer but larger macrophages; however, since there

could be many CD68 proteins/macrophage, this explanation

seems less likely. Regardless, the plaque stability scores clearly

coincided with the degree of regression, indicating that when all

regression-induced compositional changes to the plaques were

jointly considered (i.e., CD68-positive cells, lipid accumulation,

collagenous matrix, and vascular smooth muscle cells), the

remnants of mature and advanced plaques remained relative

unstable after both 10 and 20 weeks of regression.

The mouse model used in this study is, in our opinion, the most

relevant model for investigating atherosclerosis regression and

associated changes in gene expression after PCL. First, these mice

develop advanced atherosclerotic lesions on a normal chow diet

and have a plasma lipid profile very similar to that of patients with

familial hypercholesterolemia, who are highly susceptible to CAD

[22,35]. Second, the high cholesterol levels in these mice can

effectively be lowered after inducing expression of Mx1-Cre in the

liver upon pI-pC treatments resulting in the recombination of

Mttp. This can be achieved at any time during lesion progression

without affecting vitality [22]. Of note, however, unlike human

atherosclerotic plaques those in mice rarely rupture [36].

There are other ways to induce atherosclerosis regression than

by lowering ‘‘bad’’ LDL-cholesterol levels (the main form of

‘‘PCL’’ in the present study). It is also possible to overexpress

ApoA1, the major apolipoprotein of HDL-cholesterol (‘‘good’’

cholesterol), to enhance reverse cholesterol transport from the

plaques to the liver. This strategy is motivated by the fact that

plasma levels of HDL-cholesterol and ApoA1 in humans correlate

inversely and independently with coronary heart disease [37,38].

Furthermore, in Apoe2/2 mice, infusion of recombinant ApoA1

lowers lipid and macrophage levels in the plaque [39]. However,

adenoviral transfer of ApoA1 into Ldlr2/2 mice has had

inconsistent results [40–42]. In one study, preexisting atheroscle-

rotic lesions regressed after ApoA1 gene transfer [41]; however, in

other studies, regression was not detected, but progression was

slowed, and plaques in the aortic root had fewer macrophages and

more collagen content [40,42]. Yet, the consensus is that increased

levels HDL-cholesterol on top of LDL-cholesterol lowering could

have additive effects on atherosclerosis regression and result in a

more stable phenotype [39,42,43]. However, the plasma HDL-

cholesterol levels in our study mice were reduced after PCL, which

has also been shown by others [22], indicating that reverse

cholesterol transport might not play a major role in the regression

of atherosclerosis in our model.

Investigating transcriptional responses in the whole atheroscle-

rotic arterial wall is not entirely trivial. As alluded to already,

gene expression changes in the arterial wall may reflect gene

activation (i.e., changes in the cellular mRNA concentrations) or

changes in the cellular composition of the lesion. However, in our

experience, it is vital to have data from the entire lesion, as many

molecular processes are intermixed and depend on gene activity

across cell types. The ideal situation would be to have mRNA

profiles of single cell types (e.g., macrophages) together with the

total mRNA profile of the same arterial wall. Unfortunately, this

is not feasible in most instances. Another challenge of cell-type-

specific mRNA profiles is to accurately distinguish different cell

types before RNA isolation. This is especially difficult in

Table 3. Number of affected genes its respective network
when the master regulatory TF were silenced with siRNA.

Number of affected genes

Gene symbol 30 weeksa 40 weeksb 50 weeksc

PPARA 1 - -

PPARG 15 - -

ADORA2A - 58 -

HMGB1 - 3 4

HMGB2 - 2 0

MLL5 - 15 4

SRSF10 - - 71

XRN2 - - 55

a53 network genes (FDR,0.1);
b185 network genes (FDR,0.1);
c379 network genes (FDR,0.05);
TF, transcription factor; -, not applicable.
doi:10.1371/journal.pgen.1004201.t003

Table 4. Network specificity of the key master regulators
using hypergeometric testing.

Hypergeometric P value

Gene symbol 30 weeks 40 weeks 50 weeks

PPARA 0.079 0.27 1.00

PPARG 0.020 0.15 1.00

HMGB2 1.00 1.00 1.00

ADORA2A 0.94 0.95 0.41

HMGB1 0.39 0.21 0.47

MLL5 0.76 0.0059 1.00

SRSF10 0.95 0.89 0.035

XRN2 0.91 0.58 0.040

doi:10.1371/journal.pgen.1004201.t004
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atherosclerosis where, for example, smooth muscle cells some-

times change their phenotype and become macrophage-like cells

[44]. In sum, as atherosclerotic lesions develop, different cell

types become increasingly similar, sharing many phenotypes—a

fact that favors the use of mRNA profiles from the entire lesion

rather than from isolated cell types. However, since gene

networks inferred from whole-lesion mRNA data will be

incomplete and have missing nodes, it is essential to evaluate

these networks in appropriate cell models of atherosclerosis, such

as the THP-1 foam cell model we used in this study.

We also reasoned that the transcriptional profiles of blood

macrophages isolated from CAD patients [29] would be most

relevant for establishing the wiring diagram of the identified PCL-

responsive mouse genes in TF-regulatory gene networks. This

choice allowed us to understand mouse genes from the perspective

of pathophysiological processes in humans [25,29,45] and to use a

human foam cell culture model to validate the TF-regulatory

networks, including their hubs (i.e., master regulators).

In summary, in this study we identified comprehensive

compendiums of atherosclerosis regression genes and discovered

that the sensitivity of atherosclerosis to PCL depends on the stage

of lesion progression. Our findings provide insight into PCL-

responsive genes upstream of atherosclerosis regression and

challenge aspects of our understanding of this clinically important

event [13,15–23,33]. In particular, our findings emphasize the

need to determine how PCL-responsive genes collectively initiate

downstream regression mechanisms, such as the TEML pathway

and possibly macrophage emigration and proliferation. Master

regulators such as PPARG, MLL5, XRN2, and SRSF10 merit

further study to determine the extent to which combinations of

these genes can be activated or deactivated to achieve complete

regression of advanced atherosclerotic lesions, with or without

parallel PCL regimens.

Materials and Methods

Ethics Statement
The use of human samples [29] in this study was approved by the

Ethics Committee of Karolinska University Hospital. All patients

gave written, informed consent. The animal studies were approved

by Stockholm’s Norra Djurförsöksetiska nämnd, Sweden.

Mouse Model
Ldlr2/2Apob100/100Mttpflox/floxMx1-Cre mice have a plasma

lipoprotein profile which resembles that of familial hypercholes-

terolemia and causes rapid atherosclerosis progression [22]. For

Mttp deletion, mice were injected with 125 ml of pI-pC (1 mg/ml;

Invivogen) every other day for 6 days to induce Cre expression and

thereby Mttp recombination (MttpD/D). The mice were sacrificed 1,

10, or 20 weeks after Mttp depletion. Littermate controls received

PBS (Mttpflox/flox). The study mice were backcrossed 5 times to

C57BL/6 mice (,5% 129/SvJae and .95% C57BL/6), housed

in a pathogen-free barrier facility (12-hour light/12-hour dark

cycle), and fed rodent chow containing 4% fat. Plasma cholesterol

(total and HDL) and triglyceride concentrations in fasting blood

samples were determined with colorimetric assays (Infinity

cholesterol/triglyceride kits; Thermo Scientific and HDL quanti-

fication colorimetric kit; BioVision), and plasma glucose levels with

Precision Xtra (MediScience).

En Face Analysis and Histology
Aortas were pinned out flat on black wax surface as described

[46], stained with Sudan IV, photographed with a Nikon

SMZ1000 microscope, and analyzed with Easy Image Analysis

2000 software (Tekno Optik, Sweden). Lesion area was calculated

as the percentage of the entire aortic surface between the aortic

root and the iliac bifurcation. Aortic roots were isolated,

immediately frozen in liquid nitrogen, embedded in OCT

compound (Histolab, Sweden), cut into 10-mm sections, and

stained with hematoxylin and Oil-Red-O (Sigma-Aldrich) for

neutral lipids [47] or Picrosirius Red (Sigma-Aldrich) for collagen

as described [48]. Other sections were incubated first with rat anti-

mouse CD68 antibody (Serotec) or rabbit anti-mouse SM22a
(Abcam) overnight at 4uC and then with biotinylated secondary

anti-rat IgG or anti-rabbit IgG antibodies (Vector Laboratories)

and counterstained with hematoxylin (Sigma-Aldrich). Biotin

emission was developed with diaminobenzidine (Vector Labora-

tories). Except for sections stained for collagen, which were

photographed with a Leica DMRD microscope and a Leica

DC480 color video camera, sections were photographed with an

Apotome microscope (Carl Zeiss) and quantified with an

AxioGraphic station (Carl Zeiss) at 506magnification. For en face

analysis, we examined aortas from 44 Ldlr2/2Apob100/100

Mttpflox/flox mice (n = 12, 12, 8, 8, and 4 for weeks 20, 30, 40,

50, and 60, respectively) and 51 Ldlr2/2Apob100/100MttpD/D mice

(early lesions: n = 10 after 10 weeks and n = 6 after 20 weeks of

PCL; mature lesions: n = 8 after both 10 and 20 weeks of PCL;

advanced lesions: n = 9 and 10 after 10 and 20 weeks of PCL). The

plaque stability score for each mouse was calculated as (SM22a+
collagen)/(CD68+Oil-Red-O) % areas [27] and normalized to

plaque burden (lesion surface area). Missing data points (n = 19,

16%) were imputed with PROC MI in SAS version 9.3. The

statistical significance of differences between time points was

determined with two-tailed t tests.

RNA Isolation and Global Gene Expression Profiling of
Mouse Aortic Arch

Aortas were perfused with PBS and then with RNAlater

(Qiagen), and the aortic arch (third rib to aortic root) was removed

(to get RNA from the most atherosclerotic part of the aorta) and

homogenized with FastPrep (Qbiogene). Total RNA was isolated

with an RNeasy Mini-kit with a DNAse I treatment step (Qiagen).

Table 5. Effects of siRNA inhibition of the network top hubs on cholesterol-ester accumulation in a THP-1 foam cell model.

Gene symbol Control (relative CE levels) siRNA knock (relative CE levels) CE content (% relative control) P value

PPARG 10069.0 112613 +12 0.008

MLL5 100617 121620 +21 0.01

SRSF10 10068.4 82.869.2 217 0.0008

XRN2 100612 85.2617 215 0.003

CE, cholesterol ester.
doi:10.1371/journal.pgen.1004201.t005
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RNA quality was assessed with a Bioanalyzer 2100 (Agilent

Technologies), and RNA quantity with NanoDrop (Thermo

Scientific). Global mRNA expression profiles were generated with

Mouse Gene 1.0 ST arrays (Affymetrix) according to the

manufacturer’s protocol. In brief, amplified and biotinylated

cRNA was generated from 100 ng of high-quality RNA with the

GeneChip WT Sense Target Labeling and Control Reagents kit

(No. 900652, Affymetrix). The arrays were hybridized in a

GeneChip Hybridization Oven 640, further processed with a

Fluidics Station 450, scanned with a GeneArray Scanner 3000 7G,

and analyzed with GeneChip Operational Software 2.0. For

global gene expression profiling, 18 Ldlr2/2Apob100/100Mttpflox/flox

control mice (n = 6, 6, and 6 at week 30, 40, and 50, respectively)

and 48 Ldlr2/2Apob100/100MttpD/D mice (early lesions: n = 6

immediately after PCL and n = 10 after PCL for 10 weeks;

mature lesions: n = 6 immediately after PCL and n = 10 after PCL

for 10 weeks; advanced lesions: n = 6 immediately after PCL and

n = 10 after PCL for 10 weeks) were used.

Analyses of Mouse Gene Expression Data
All samples were randomized and run simultaneously on the

arrays at the Bioinformatics and Expression Analysis Core Facility

at the Karolinska Institutet. Global mRNA expression data were

pre-processed with the three-step Robust Multichip Average [49]

procedure (background correction, quantile normalization, and

summarization). No batch effects were detected that needed to be

adjusted for. However, when comparing within groups of samples

a few samples were considered outliers and excluded from further

analyses. Groups of samples were compared by using differential

expression (FDR,0.30) [50]. The FDR level was selected partly

on the basis of sensitivity analysis [51] to capture an adequately

large portion of the true-positive genes for the following

downstream analysis. Mathematica 7.0 and 8.0 or R 2.9.2

‘‘package: affy’’ was used for all calculations. Selected probe sets

were annotated with NetAffx (Affymetrix) and DAVID [52,53].

Ingenuity Systems Pathway Analysis (IPA, www.ingenuity.com)

was used to for functional analyses of sets of differentially

expressed genes. The top bio-function categories—molecular and

cellular functions and disease and disorders— were used.

Global Gene Expression Profiles of Human Macrophages
Primary human monocytes from carotid endarterectomy

patients [29] were isolated from 80 ml of EDTA-treated blood

by density-gradient centrifugation and Ficoll-Paque Plus (Amer-

sham Biosciences). The monocyte-enriched layer was collected,

washed, and plated in RPMI 1640 (Gibco-Invitrogen) supple-

mented with penicillin (100 U/ml) and streptomycin (100 mg/ml)

(PEST) and 10% human AB serum (Sigma-Aldrich) in six-well

plates (BD Bioscience). The next day, nonadherent cells were

removed, and the remaining monocyte/macrophage-enriched

cells were given fresh RPMI 1640 medium supplemented as

described above. After 7 days, total RNA from adherent

macrophages was isolated with the RNeasy Mini-kit (Qiagen).

Thirty-eight mRNA expression profiles were generated with

custom microarrays (Affymetrix GeneChip HuRSTA-2a520709).

The Robust Multichip Average algorithm in Affymetrix Power

Tools (version 1.14.2) was used for background subtraction,

normalization, and summarizing of raw microarray data.

CAD/MI Risk Enrichment Analyses Using the MIGen
Genome-Wide Association Dataset

If the gene activity of the identified mouse gene sets (PCL-

responsive and regression-reactive) are important for atherosclerosis

progression/regression (rather than being reactive markers of

disease development), eSNPs of the identified gene sets could be

enriched for CAD/MI risk. An eSNP indicates a functional

relationship between the SNP and the expression of the identified

gene (within 1 Mb upstream and downstream of transcription start

site) [29,54]. To investigate this, we first identified human orthologs

of the differentially expressed mouse genes using HUGO Gene

Nomenclature Committee’s (HGNC) Human and Mouse Ortho-

logous Gene Nomenclature and National Center for Biotechnology

Information’s (NCBI) HomoloGene (Tables S8, S9, S10, S11, S12,

S13). Enrichment of eSNPs with CAD/MI risk was determined

with GWA data from MIGen [28]. eSNPs were identified from

global genotype data (n = 156) and mRNA expression profiles of in

vitro differentiated blood macrophages [29]. eSNPs were expanded

with SNPs in strong linkage disequilibrium (r2.0.9) within 200 kb

of the eSNPs using HapMap. The expanded SNP sets for the causal

gene sets consisted of 168, 511, and 1170 SNPs and the reactive

gene sets of 17, 276, and 1057 SNPs for 30, 40, and 50 weeks,

respectively; overlapping SNPs between causal and reactive SNP

sets were removed from the reactive SNP sets. A total of 5000

random samples of SNPs were used to determine whether the

expanded SNP set was more likely to be associated with CAD/MI

than randomly selected sets with the same characteristics (i.e., equal

number of SNPs, chromosomal distribution, and minor allele

frequency .5%). Finally, fold enrichment in risk was calculated as

the ratio between the relative number of significant SNPs (P,0.05)

in the expanded SNP set and the relative number of significant

SNPs (P,0.05) in the random sets. MATLAB R2011a was used for

all computations.

Regulatory Gene Network Reconstructions
TF-regulatory co-expression networks were reconstructed from

global mRNA expression profiles from blood macrophages [29].

Regulatory gene networks were inferred from human homologs of

causal mouse genes using the context likelihood of relatedness

(CLR) method with Pearson correlation [55,56]. The CLR

method computes the significance of a given regulator-target

similarity score for a gene regulatory network. In brief, by using

Pearson correlation, co-expression similarity between all gene

pairs was computed and stored in a matrix, M [55]. Next,

background corrections using positive z-scores were computed for

each entry for M, considering both row and column values. Then,

the joint likelihood of pairwise z-scores for each M was assessed

[56]. TF-regulatory interactions used for the networks in early,

mature, and advanced lesions had P values of ,0.0051, ,0.0013,

and ,0.00042, respectively, corresponding to the 50% most

probable interactions in each network. CLR with Pearson

correlation was implemented in C++. For each time point, the

10 most connected TFs are shown in the visualization of the

networks with Cytoscape 2.8.2 [57].

siRNA Perturbation of THP-1 Macrophages Incubated
with Ac-LDL

Human THP-1 monocytes were plated at 56105 cells/well in

six-well culture dishes (Becton Dickinson) containing 10% fetal calf

serum (FCS)-RPMI-1640 supplemented with PEST. The cells

were incubated with PMA (50 ng/mL) (Sigma-Aldrich) for

72 hours to induce differentiation into macrophages and with

Ac-LDL (50 mg/mL) for 48 hours to generate foam cells.

Thereafter, for each master regulator, cells were transfected with

siRNA (one at a time) (Ambion, Life Technologies, Table S17)

using Lipofectamine 2000 as recommended by the manufacturer

(Invitrogen), in medium without FCS, PEST, or PMA. Forty-eight

hours after siRNA transfection, cells were examined for effects on
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the expression of network genes (see section Gene Expression

Measurements and Hypergeometric Testing for Network Speci-

ficity) and CE accumulation (see section Lipid and Protein

Measurements).

Ac-LDL was prepared as described [58]. The samples were then

dialyzed against PBS at 4uC. Ac-LDL protein concentration was

determined by the Bradford method. LDL was isolated from

plasma of healthy donors by sequential ultracentrifugation [59].

Gene Expression Measurements and Hypergeometric
Testing for Network Specificity

For differential expression analyses and to determine the degree

of silencing by siRNA (Table S17), total RNA was isolated from

the targeted THP-1 foam cells with the RNeasy Mini-kit (Qiagen).

The concentration was determined by NanoDrop (Thermo

Scientific). The degree of siRNA silencing was determined by

TaqMan analyses (Table S17). cDNA was synthesized from 0.4 mg

of total RNA with Superscript III (Invitrogen). Diluted cDNA was

amplified by real-time PCR with 16TaqMan universal PCR

master mix (Applied Biosystems) according to the manufacturer’s

protocol. Assay-On-Demand kits with corresponding primers and

probes from Applied Biosystems were used (Table S17); samples

were normalized with the comparative Ct method. mRNA

expression profiles of targeted THP-1 foam cells were generated

with Agilent Human Custom Gene Expression Microarray

8615K, containing network genes (556 unique genes from the

30, 40, and 50 week networks) and TEML genes (116 TEML

genes from DAVID (two of these 116 genes are present among the

network genes) as well as three macrophage emigration genes

(CCR7, LXR, and NTN1), for a total 673 of unique genes (spotted

in duplicate), according to the manufacturer’s instructions. The R

package ‘‘limma’’ was used to normalize the Agilent array data

and to identify differentially expressed genes (FDR,0.1) with the

Benjamini-Hochberg procedure.

The probability that a master regulator was specific for its time-

point network rather than expected by chance was calculated by

using hypergeometric distribution P values as follows:

P~1{
Xx{1

i~0

K

i

� �
M{K

n{i

� �

M

n

� �

When sampling X genes of M genes (M = 673 array genes), what is

the probability (P) that x or more of these genes belong to a time-

point-specific network K (K = 53, 185, or 379 genes for the 30-, 40-,

or 50-week network, respectively), shared by n of the M genes

(Table 4).

Lipid and Protein Measurements
Lipids from siRNA-targeted THP-1-derived foam cells were

isolated by extraction with hexane/isopropanol (3:2) at room

temperature for 1 hour and then with 0.5 ml of chloroform for

15 min [60]. The lipids were dried and resuspended in

isopropanol with 1% Triton-X-100 (Sigma-Aldrich). The lipid

content of the foam cells was determined by enzymatic assays

using the Infinity kit for total cholesterol (Thermo Scientific) and

a kit for free cholesterol (Wako Chemicals). After lipid extraction,

proteins were extracted from the same wells by incubation with

0.5 M sodium hydroxide for 5 hours at 37uC. Protein concen-

tration was determined by the Bradford method. CE accumula-

tion in the targeted THP-1 foam cells was calculated as total

cholesterol – free cholesterol/protein concentration, relative to

control.

Supporting Information

Figure S1 A magnification of the TF regulatory network of

PCL-responsive genes at week 40, shown in Figure 5B. Reds

square nodes are TFs. The yellow square node show the specific

master regulatory TF for the mature regression network, MLL5.

Edges are connections between TFs and their first neighbor.

(EPS)

Figure S2 A magnification of the TF regulatory network of

PCL-responsive genes at week 50, shown in Figure 5C. Reds

square nodes are TFs. Yellow square node show the specific

master regulatory TFs for the advanced regression network,

SRSF10 and XRN2. Edges are connections between TFs and their

first neighbor.

(EPS)

Table S1 Plasma HDL-cholesterol concentrations in the study

mice at sacrifice.

(XLSX)

Table S2 PCL-responsive genes at week 30.

(XLSX)

Table S3 PCL-responsive genes at week 40.

(XLSX)

Table S4 PCL-responsive genes at week 50.

(XLSX)

Table S5 Regression reactive genes at week 30.

(XLSX)

Table S6 Regression reactive genes at week 40.

(XLSX)

Table S7 Regression reactive genes at week 50.

(XLSX)

Table S8 Human orthologs for PCL-responsive mouse genes

and network connections at week 30.

(XLSX)

Table S9 Human orthologs for PCL-responsive mouse genes

and network connections at week 40.

(XLSX)

Table S10 Human orthologs for PCL-responsive mouse genes

and network connections at week 50.

(XLSX)

Table S11 Human orthologs for Regression reactive mouse

genes at week 30.

(XLSX)

Table S12 Human orthologs for Regression reactive mouse

genes at week 40.

(XLSX)

Table S13 Human orthologs for Regression reactive mouse

genes at week 50.

(XLSX)

Table S14 Functional enrichment using Ingenuity category Top

Bio Function for PCL-responsive genes at week 30.

(XLSX)

Table S15 Functional enrichment using Ingenuity category Top

Bio Function for PCL-responsive genes at week 40.

(XLSX)

Cholesterol-Responsive Regression Gene Networks

PLOS Genetics | www.plosgenetics.org 14 February 2014 | Volume 10 | Issue 2 | e1004201



Table S16 Functional enrichment using Ingenuity category Top

Bio Function for PCL-responsive genes at week 50.

(XLSX)

Table S17 siRNA and TaqMan assays and the degree of siRNA

inhibition.

(XLSX)
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