5 research outputs found

    Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid-liquid extraction and liquid chromatography-tandem mass spectrometry

    Full text link
    We report on the development and validation under ISO 17025 criteria of a multi-residue confirmatory method to identify and quantify 17 widely chemically different pesticides (insecticides: Carbofuran, Methiocarb, Pirimicarb, Dimethoate, Fipronil, Imidacloprid; herbicides: Amidosulfuron, Rimsulfuron, Atrazine, Simazine, Chloroturon, Linuron, Isoxaflutole, Metosulam; fungicides: Diethofencarb) and 2 metabolites (Methiocarb sulfoxide and 2-Hydroxytertbutylazine) in honey. This method is based on an on-column liquid liquid extraction (OCLLE) using diatomaceous earth as inert solid support and liquid chromatography (LC) coupled to mass spectrometry (MS) operating in tandem mode (MS/MS). Method specificity is ensured by checking retention time and theoretical ratio between two transitions from a single precursor ion. Linearity is demonstrated all along the range of concentration that was investigated, from 0.1 to 20 ng g(-1) raw honey, with correlation coefficients ranging from 0.921 to 0.999, depending on chemicals. Recovery rates obtained on home-made quality control samples are between 71 and 90%, well above the range defined by the EC/657/2002 document, but in the range we had fixed to ensure proper quantification, as levels found in real samples could not be corrected for recovery rates. Reproducibility is found to be between 8 and 27%. Calculated CC alpha and CC beta (0.0002-0.943 mg g(-1) for CC alpha, and 0.0002-1.232 ng g(-1) for CCP) show the good sensitivity attained by this rnulti-residue analytical method. The robustness of the method has been tested in analyzing more than 100 raw honey samples collected from different areas in Belgium, as well as some wax and bee samples, with a slightly adapted procedure. (C) 2007 Elsevier B.V. All rights reserved

    Chapter 11: Emerging approaches in the analysis of inks on questioned documents

    Get PDF
    Questioned document is one of the oldest fields of examination reported in forensic science. Documents are used as physical (nowadays sometimes virtual) traces of human transactions, thus questioning, falsification and counterfeiting certainly have existed since their invention and routine use. This is also the case for biblical texts and art pieces for which authenticity and authorship are often disputed. While mainly handwriting comparison was reported in early works, the composition and characteristics of inks on paper were often briefly discussed (see for example the early works of Demelle or Raveneau in the XVIIe century ). Since then, many technological developments have impacted questioned document examination, both with regard to the ink and paper production, as well as to the writing instruments or printing techniques. Nowadays, further progress have changed the world of (questioned) documents, through the introduction of virtual documents using electronic signatures and security documents such as passports using mixed physical and digital biometric data. Thus, the document examiner' expertise has to quickly evolve and adapt to such developments, sometimes necessitating the combination of skills from different disciplines not always co-existing in forensic laboratories (such as chemistry, physics, statistics, engineering, material science, computer science). After a brief overview of the historical development in both ink formulation and analysis, this chapter will investigate the relevance of rapidly evolving technologies for application to the examination of questioned documents in a forensic perspective
    corecore