27 research outputs found

    An illustrated guide of subfossil Chironomidae (Insecta: Diptera) from waterbodies of Central America and the Yucatan Peninsula

    Get PDF
    We provide a photographic guide and taxonomic diagnosis of Chironomidae larval remains obtained from surface sediments and short cores of 92 waterbodies situated on the Yucatan Peninsula and in Central America, namely Mexico, Belize, Guatemala, El Salvador and Honduras. A total of 101 morphotypes belonging to 64 genera were identified. Chironominae was the most species-rich subfamily represented by 57 morphotypes of 34 genera. The most widespread and abundant genus was Goeldichironomus followed by Chironomus and Polypedilum. Orthocladiinae were represented by 26 morphotypes and 17 genera, with the most common one being Cricotopus. Remains of this subfamily were recorded in only 1/5 of the surveyed lakes. Tanypodinae included 17 morphotypes belonging to 12 genera. Labrundinia along with Ablabesmyia and Coelotanypus were the most common genera. Subfamily Podonominae was represented by the genus Parochlus. We believe that our study includes most of the Chironomidae genera of Central America and will have broad applicability for both paleolimnologists and aquatic ecologists.Fil: Hamerlík, L.. Slovak Academy of Sciences; EslovaquiaFil: Silva, F. L.. Universidade de Sao Paulo; BrasilFil: Massaferro, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Administración de Parques Nacionales; Argentin

    Imprints of the Little Ice Age and the severe earthquake of AD 2001 on the aquatic ecosystem of a tropical maar lake in El Salvador

    Get PDF
    Using a 530-year sediment record from the maar Lake Apastepeque, El Salvador, and based on diverse geochemical and biological (cladocerans, chironomids, diatoms, ostracods, testate amoebae) indicators, we estimated climatic and environmental alterations during the Little Ice Age (LIA) and reconstructed the recent history of the lake. Results demonstrate relatively humid conditions in the mid-elevations (500 m a.s.l.) of El Salvador during most parts of the LIA, resulting in high lake levels. Contrarily, the first part of the LIA was characterized by drier climates comparable to studies from Mexico and Belize, which correlated this phase with the Spörer minimum. Regional comparison with palaeorecords from the northern Neotropics reveals a high heterogeneity in local expressions of the LIA in Central America, likely connected to the high topographic heterogeneity of the region. Since the beginning of the 20th century, Lake Apastepeque has experienced enhanced human impact expressed as increased nutrient supply. The most recent period was characterized by significant environmental disturbance, which we relate to an upper-crustal earthquake, one of the strongest over the last 500 years, that affected the region on 13th February 2001 (Mw = 6.6, epicentre at 10 km depth, 30 km from the lake). The release of toxic bottom components such as hydrogen sulphide and high turbidity and turbulence of water caused major species turnover in the lake ecosystem, resulting in a massive fish kill and colonization by large cladocerans. Modern sediments still show slightly altered biota communities compared to pre-earthquake assemblages, indicating that the ecosystem has still not fully recovered

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    The ecological role of ponds in a changing world

    Get PDF
    The fifth conference of the European Pond Conservation Network (Luxembourg, June 2012) brought together researchers, environmental managers, and other stakeholders with the aim to share stateof-the-art knowledge on the ecology, management, and conservation of ponds in the context of the many challenges facing the wider water environment. Although well-known ecological patterns apply to most ponds in Europe and elsewhere, recent data highlight that part of the environmental variables governing pond biodiversity remain specific to climatic/ biogeographic regions and to elevation ranges, suggesting that, in addition to common practice, management plans should include range-specific measures. Beyond the contribution of individual ponds to the aquatic and terrestrial life, connected networks of ponds are vital in the provision of new climate space as a response to global climate change, by allowing the observed northward and/or upward movements of species. In terms of services, ponds offer sustainable solutions to key issues of water management and climate change such as nutrient retention, rainfall interception, or carbon sequestration. While the ecological role of ponds is now well established, authoritative research-based advice remains needed to inform future direction in the conservation of small water bodies and to further bridge the gap between science and practice

    Molecular and morphological characterisation of larvae of the genus Diamesa Meigen, 1835 (Diptera: Chironomidae) in Alpine streams (Ötztal Alps, Austria).

    No full text
    Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations

    A continental-scale chironomid training set for reconstructing Arctic temperatures

    Get PDF
    We present chironomid species assemblage data from 402 lakes across northern North America, Greenland, Iceland, and Svalbard to inform interpretations of Holocene subfossil chironomid assemblages used in paleolimnological reconstruction. This calibration-set was developed by re-identifying and taxonomically harmonizing chironomids in previously described surface sediment samples, with identifications made at finer taxonomic resolution than in original publications. The large geographic coverage of this dataset is intended to provide climatic analogues for a wide range of Holocene climates in the northwest North Atlantic region and North American Arctic, including Greenland. For many of these regions, modern calibration data are sparse despite keen interest in paleoclimate reconstructions from high latitudes. A suite of chironomid-based temperature models based upon this training set are evaluated here and the best statistical model is used to reconstruct late glacial (Allerød and Younger Dryas) and Holocene paleotemperatures at five non-glacial lakes representing a wide range of climate zones across Greenland. The new continent-scale training set offers more analogues for the majority of Greenland subfossil assemblages than existing smaller training sets, with many in Iceland and northern Canada. We find strong agreement between chironomid-based reconstructions derived from the new model and independent glacier-based evidence for multi-millennial Holocene temperature trends. Some of the new Holocene reconstructions are very similar to published data, but at a subset of sites and time periods we find improved paleotemperature reconstructions attributable both to the new model's finer taxonomic resolution and to its expanded geographic/climatic coverage, which resulted in improved characterization of species optima. In the late glacial, the new model's finer taxonomic resolution yields a unique ability to resolve temperatures of the Allerød from colder temperatures of the Younger Dryas, although the magnitude of that temperature difference may be underestimated. This study demonstrates the value of geographically and climatically broad paleoecological training sets. The large, taxonomically harmonized dataset presented here should be useful for a wide range of future investigations, including but not limited to paleotemperature reconstructions across the Arctic

    Sampling sites in the Ötztal Alps.

    No full text
    Sampling on August 22, 2020 (RM3, RM4), August 23, 2020 (RM0, RM1, RM2), and July 20, 2021 (TJ1, KT1, KT2). For sapling site codes see Table 1; Photos: D. Vondrák.</p
    corecore