297 research outputs found

    The HIV-1 protective-35SNP effect in Caucasians is CD8 T cell mediated

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage

    Get PDF
    Prussian blue analogues (PBAs) are reported to be efficient sodium storage materials because of the unique advantages of their metal–organic framework structure. However, the issues of low specific capacity and poor reversibility, caused by phase transitions during charge/discharge cycling, have thus far limited the applicability of these materials. Herein, a new approach is presented to substantially improve the electrochemical properties of PBAs by introducing high entropy into the crystal structure. To achieve this, five different metal species are introduced, sharing the same nitrogen-coordinated site, thereby increasing the configurational entropy of the system beyond 1.5R. By careful selection of the elements, high-entropy PBA (HE-PBA) presents a quasi-zero-strain reaction mechanism, resulting in increased cycling stability and rate capability. The key to such improvement lies in the high entropy and associated effects as well as the presence of several active redox centers. The gassing behavior of PBAs is also reported. Evolution of dimeric cyanogen due to oxidation of the cyanide ligands is detected, which can be attributed to the structural degradation of HE-PBA during battery operation. By optimizing the electrochemical window, a Coulombic efficiency of nearly 100% is retained after cycling for more than 3000 cycles

    Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency

    Get PDF
    BACKGROUND. The histone deacetylase (HDAC) inhibitor vorinostat (VOR) can increase HIV RNA expression in vivo within resting CD4+ T cells of aviremic HIV+ individuals. However, while studies of VOR or other HDAC inhibitors have reported reversal of latency, none has demonstrated clearance of latent infection. We sought to identify the optimal dosing of VOR for effective serial reversal of HIV latency

    Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses

    Get PDF
    Ajuts: R01/R56 NIH Grant AI-52779 (GDT), NIH F31 Fellowship (1F31AI106519-01)(TLP), Center for AIDS Research (P30 AI 64518) i Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, grant number UM1-AI100645-01 (AM)Abstract.Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control

    Proteome-wide analysis of HIV-specific naive and memory CD4+ T cells in unexposed blood donors

    Get PDF
    The preexisting HIV-1–specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4+ T cell repertoire in healthy HIV-1–negative volunteers, the HLA-peptide tetramer enrichment and T cell library technique, and show high concordance (r = 0.989). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4+ T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1– unexposed, seronegative donors. HIV-1–specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4+ T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8–12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome-wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV-1–specific helper cell responses by vaccination

    Proteome-wide analysis of HIV-specific naive and memory CD4 + T cells in unexposed blood donors

    Get PDF
    Healthy, uninfected individuals harbor HIV-specific naive and memory CD4+ T cells, and many memory T cell epitopes are similar in sequence to peptides expressed by natural commensal bacteria, suggesting potential cross-reactivity.The preexisting HIV-1–specific T cell repertoire must influence both the immunodominance of T cells after infection and immunogenicity of vaccines. We directly compared two methods for measuring the preexisting CD4+ T cell repertoire in healthy HIV-1–negative volunteers, the HLA-peptide tetramer enrichment and T cell library technique, and show high concordance (r = 0.989). Using the library technique, we examined whether naive, central memory, and/or effector memory CD4+ T cells specific for overlapping peptides spanning the entire HIV-1 proteome were detectable in 10 HLA diverse, HIV-1–unexposed, seronegative donors. HIV-1–specific cells were detected in all donors at a mean of 55 cells/million naive cells and 38.9 and 34.1 cells/million in central and effector memory subsets. Remarkably, peptide mapping showed most epitopes recognized by naive (88%) and memory (56%) CD4+ T cells had been previously reported in natural HIV-1 infection. Furthermore, 83% of epitopes identified in preexisting memory subsets shared epitope length matches (8–12 amino acids) with human microbiome proteins, suggestive of a possible cross-reactive mechanism. These results underline the power of a proteome-wide analysis of peptide recognition by human T cells for the identification of dominant antigens and provide a baseline for optimizing HIV-1–specific helper cell responses by vaccination

    Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection

    Get PDF
    ABSTRACT Attrition within the CD4 + T cell compartment, high viremia, and a cytokine storm characterize the early days after HIV infection. When the first emerging HIV-specific CD8 + T cell responses gain control over viral replication it is incomplete, and clearance of HIV infection is not achieved even in the rare cases of individuals who spontaneously control viral replication to nearly immeasurably low levels. Thus, despite their partial ability to control viremia, HIV-specific CD8 + T cell responses are insufficient to clear HIV infection. Studying individuals in the first few days of acute HIV infection, we detected the emergence of a unique population of CD38 + CD27 − CD8 + T cells characterized by the low expression of the CD8 receptor (CD8 dim ). Interestingly, while high frequencies of HIV-specific CD8 + T cell responses occur within the CD38 + CD27 − CD8 dim T cell population, the minority populations of CD8 bright T cells are significantly more effective in inhibiting HIV replication. Furthermore, the frequency of CD8 dim T cells directly correlates with viral load and clinical predictors of more rapid disease progression. We found that a canonical burst of proliferative cytokines coincides with the emergence of CD8 dim T cells, and the size of this population inversely correlates with the acute loss of CD4 + T cells. These data indicate, for the first time, that early CD4 + T cell loss coincides with the expansion of a functionally impaired HIV-specific CD8 dim T cell population less efficient in controlling HIV viremia. IMPORTANCE A distinct population of activated CD8 + T cells appears during acute HIV infection with diminished capacity to inhibit HIV replication and is predictive of viral set point, offering the first immunologic evidence of CD8 + T cell dysfunction during acute infection

    An unusual case of autoimmune pancreatitis presenting as pancreatic mass and obstructive jaundice: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoimmune pancreatitis is a rare chronic inflammatory pancreatic disease that is increasingly being diagnosed worldwide. As a result of overlap in clinical and radiological features, it is often misdiagnosed as pancreatic cancer. We report the case of a patient with autoimmune pancreatitis that was initially misdiagnosed as pancreatic cancer.</p> <p>Case presentation</p> <p>A 31-year-old Caucasian man presented to our hospital with epigastric pain, jaundice and weight loss. His CA 19-9 level was elevated, and computed tomography and endoscopic ultrasound revealed a pancreatic head mass abutting the portal vein. Endoscopic retrograde cholangiopancreaticography showed narrowing of the biliary duct and poor visualization of the pancreatic duct. Fine-needle aspiration biopsy revealed atypical ductal epithelial cells, which raised clinical suspicion of adenocarcinoma. Because of the patient's unusual age for the onset of pancreatic cancer and the acuity of his symptoms, he was referred to a tertiary care center for further evaluation. His immunoglobulin G4 antibody level was 365 mg/dL, and repeat computed tomography showed features typical of autoimmune pancreatitis. The patient's symptoms resolved with corticosteroid therapy.</p> <p>Conclusion</p> <p>Autoimmune pancreatitis is a rare disease with an excellent response to corticosteroid therapy. Its unique histological appearance and response to corticosteroid therapy can reduce unnecessary surgical procedures. A thorough evaluation by a multidisciplinary team is important in rendering the diagnosis of autoimmune pancreatitis.</p

    Tracking the culprit: HIV-1 evolution and immune selection revealed by single-genome amplification

    Get PDF
    Early control of HIV-1 infection is determined by a balance between the host immune response and the ability of the virus to escape this response. Studies using single-genome amplification now reveal new details about the kinetics and specificity of the CD8+ T cell response and the evolution of the virus during early HIV infection
    corecore