138 research outputs found

    Gentamicin sulphate permeation through porcine intestinal epithelial cell monolayer

    Get PDF
    Gentamicin is an aminoglycoside antibiotic widely used in combination with dimethyl sulphoxide (DMSO) in topical drug formulations. It is not known, however, whether DMSO can enhance the permeation of gentamicin through biological membranes, leading to oto- and nephrotoxic side effects. A simple and reliable high-performance liquid chromatographic (HPLC) method was applied for the quantitative determination of gentamicin collected from the apical and basolateral compartments of the porcine intestinal epithelial cell line IPEC-J2 cell monolayer using fluorometric derivatisation of the analyte with fluorenylmethyloxycarbonyl chloride (FMOC) prior to chromatographic run in the presence and absence of 1% DMSO. The lack of change in transepithelial electrical resistance (TER) demonstrated that gentamicin and 1% DMSO did not affect IPEC-J2 cell monolayer integrity via the disruption of cell membranes. Chromatographic data also ascertained that gentamicin penetration across the cell monolayer even in the presence of 1% DMSO was negligible at 6 h after the beginning of apical gentamicin administration. This study further indicates that the addition of this organic solvent does not increase the incidence of toxic effects related to gentamicin permeation

    A Novel Circulating MicroRNA for the Detection of Acute Myocarditis.

    Get PDF
    The diagnosis of acute myocarditis typically requires either endomyocardial biopsy (which is invasive) or cardiovascular magnetic resonance imaging (which is not universally available). Additional approaches to diagnosis are desirable. We sought to identify a novel microRNA for the diagnosis of acute myocarditis. To identify a microRNA specific for myocarditis, we performed microRNA microarray analyses and quantitative polymerase-chain-reaction (qPCR) assays in sorted CD4+ T cells and type 17 helper T (Th17) cells after inducing experimental autoimmune myocarditis or myocardial infarction in mice. We also performed qPCR in samples from coxsackievirus-induced myocarditis in mice. We then identified the human homologue for this microRNA and compared its expression in plasma obtained from patients with acute myocarditis with the expression in various controls. We confirmed that Th17 cells, which are characterized by the production of interleukin-17, are a characteristic feature of myocardial injury in the acute phase of myocarditis. The microRNA mmu-miR-721 was synthesized by Th17 cells and was present in the plasma of mice with acute autoimmune or viral myocarditis but not in those with acute myocardial infarction. The human homologue, designated hsa-miR-Chr8:96, was identified in four independent cohorts of patients with myocarditis. The area under the receiver-operating-characteristic curve for this novel microRNA for distinguishing patients with acute myocarditis from those with myocardial infarction was 0.927 (95% confidence interval, 0.879 to 0.975). The microRNA retained its diagnostic value in models after adjustment for age, sex, ejection fraction, and serum troponin level. After identifying a novel microRNA in mice and humans with myocarditis, we found that the human homologue (hsa-miR-Chr8:96) could be used to distinguish patients with myocarditis from those with myocardial infarction. (Funded by the Spanish Ministry of Science and Innovation and others.).Supported by a grant (PI19/00545, to Dr. Martín) from the Ministry of Science and Innovation through the Carlos III Institute of Health–Fondo de Investigación Sanitaria; by a grant from the Biomedical Research Networking Center on Cardiovascular Diseases (to Drs. Martín, Sánchez-Madrid, and Ibáñez); by grants (S2017/BMD-3671-INFLAMUNE-CM, to Drs. Martín and Sánchez-Madrid; and S2017/BMD-3867-RENIM-CM, to Dr. Ibáñez) from Comunidad de Madrid; by a grant (20152330 31, to Drs. Martín, Sánchez-Madrid, and Alfonso) from Fundació La Marató de TV3; by grants (ERC-2011-AdG 294340-GENTRIS, to Dr. Sánchez-Madrid; and ERC-2018-CoG 819775-MATRIX, to Dr. Ibáñez) from the European Research Council; by grants (SAF2017-82886R, to Dr. Sánchez-Madrid; RETOS2019-107332RB-I00, to Dr. Ibáñez; and SAF2017-90604-REDT-NurCaMeIn and RTI2018-095928-BI00, to Dr. Ricote) from the Ministry of Science and Innovation; by Fondo Europeo de Desarrollo Regional (FEDER); and by a 2016 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation to Dr. Martín. The National Center for Cardiovascular Research (CNIC) is supported by the Carlos III Institute of Health, the Ministry of Science and Innovation, the Pro CNIC Foundation, and by a Severo Ochoa Center of Excellence grant (SEV-2015-0505). Mr. Blanco-Domínguez is supported by a grant (FPU16/02780) from the Formación de Profesorado Universitario program of the Spanish Ministry of Education, Culture, and Sports. Ms. Linillos-Pradillo is supported by a fellowship (PEJD-2016/BMD-2789) from Fondo de Garantía de Empleo Juvenil de Comunidad de Madrid. Dr. Relaño is supported by a grant (BES-2015-072625) from Contratos Predoctorales Severo Ochoa para la Formación de Doctores of the Ministry of Economy and Competitiveness. Dr. Alonso-Herranz is supported by a fellowship from La Caixa–CNIC. Dr. Caforio is supported by Budget Integrato per la Ricerca dei Dipartimenti BIRD-2019 from Università di Padova. Dr. Das is supported by grants (UG3 TR002878 and R35 HL150807) from the National Institutes of Health and the American Heart Association through its Strategically Focused Research Networks.S

    Toxicogenomic and Phenotypic Analyses of Bisphenol-A Early-Life Exposure Toxicity in Zebrafish

    Get PDF
    Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed to BPA during early life, which is a health-risk concern of early life exposure in humans. The present study further established zebrafish as a model for toxicogenomic inference of early-life chemical exposure toxicity

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

    Full text link
    The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of <1<1 coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of <4<4 coincidences per year.Comment: 14 pages, 5 figures, 3 table

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays

    Get PDF
    For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above ∼50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    corecore